These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
293 related articles for article (PubMed ID: 23376565)
1. Effects of serotonin-norepinephrine reuptake inhibitors on locomotion and prefrontal monoamine release in spontaneously hypertensive rats. Umehara M; Ago Y; Fujita K; Hiramatsu N; Takuma K; Matsuda T Eur J Pharmacol; 2013 Feb; 702(1-3):250-7. PubMed ID: 23376565 [TBL] [Abstract][Full Text] [Related]
2. Effects of acute and chronic administration of venlafaxine and desipramine on extracellular monoamine levels in the mouse prefrontal cortex and striatum. Higashino K; Ago Y; Umehara M; Kita Y; Fujita K; Takuma K; Matsuda T Eur J Pharmacol; 2014 Apr; 729():86-93. PubMed ID: 24561044 [TBL] [Abstract][Full Text] [Related]
3. Methylphenidate and venlafaxine attenuate locomotion in spontaneously hypertensive rats, an animal model of attention-deficit/hyperactivity disorder, through α2-adrenoceptor activation. Umehara M; Ago Y; Kawanai T; Fujita K; Hiramatsu N; Takuma K; Matsuda T Behav Pharmacol; 2013 Aug; 24(4):328-31. PubMed ID: 23751518 [TBL] [Abstract][Full Text] [Related]
4. Atomoxetine-induced increases in monoamine release in the prefrontal cortex are similar in spontaneously hypertensive rats and Wistar-Kyoto rats. Ago Y; Umehara M; Higashino K; Hasebe S; Fujita K; Takuma K; Matsuda T Neurochem Res; 2014 May; 39(5):825-32. PubMed ID: 24634253 [TBL] [Abstract][Full Text] [Related]
5. Effects of acute and chronic administration of atomoxetine and methylphenidate on extracellular levels of noradrenaline, dopamine and serotonin in the prefrontal cortex and striatum of mice. Koda K; Ago Y; Cong Y; Kita Y; Takuma K; Matsuda T J Neurochem; 2010 Jul; 114(1):259-70. PubMed ID: 20403082 [TBL] [Abstract][Full Text] [Related]
7. Behavioural effects of monoamine reuptake inhibitors on symptomatic domains in an animal model of attention-deficit/hyperactivity disorder. Hiraide S; Ueno K; Yamaguchi T; Matsumoto M; Yanagawa Y; Yoshioka M; Togashi H Pharmacol Biochem Behav; 2013 Apr; 105():89-97. PubMed ID: 23380523 [TBL] [Abstract][Full Text] [Related]
8. Prepuberal subchronic methylphenidate and atomoxetine induce different long-term effects on adult behaviour and forebrain dopamine, norepinephrine and serotonin in Naples high-excitability rats. Ruocco LA; Carnevale UA; Treno C; Sadile AG; Melisi D; Arra C; Ibba M; Schirru C; Carboni E Behav Brain Res; 2010 Jun; 210(1):99-106. PubMed ID: 20156489 [TBL] [Abstract][Full Text] [Related]
9. Atomoxetine increases extracellular levels of norepinephrine and dopamine in prefrontal cortex of rat: a potential mechanism for efficacy in attention deficit/hyperactivity disorder. Bymaster FP; Katner JS; Nelson DL; Hemrick-Luecke SK; Threlkeld PG; Heiligenstein JH; Morin SM; Gehlert DR; Perry KW Neuropsychopharmacology; 2002 Nov; 27(5):699-711. PubMed ID: 12431845 [TBL] [Abstract][Full Text] [Related]
10. Oroxylin A improves attention deficit hyperactivity disorder-like behaviors in the spontaneously hypertensive rat and inhibits reuptake of dopamine in vitro. Yoon SY; dela Peña I; Kim SM; Woo TS; Shin CY; Son KH; Park H; Lee YS; Ryu JH; Jin M; Kim KM; Cheong JH Arch Pharm Res; 2013 Jan; 36(1):134-40. PubMed ID: 23371806 [TBL] [Abstract][Full Text] [Related]
11. Reciprocal effects of combined administration of serotonin, noradrenaline and dopamine reuptake inhibitors on serotonin and dopamine levels in the rat prefrontal cortex: the role of 5-HT1A receptors. Weikop P; Kehr J; Scheel-Krüger J J Psychopharmacol; 2007 Nov; 21(8):795-804. PubMed ID: 17984160 [TBL] [Abstract][Full Text] [Related]
12. Evidence for reduced tonic levels of GABA in the hippocampus of an animal model of ADHD, the spontaneously hypertensive rat. Sterley TL; Howells FM; Russell VA Brain Res; 2013 Dec; 1541():52-60. PubMed ID: 24161405 [TBL] [Abstract][Full Text] [Related]
13. The usefulness of the spontaneously hypertensive rat to model attention-deficit/hyperactivity disorder (ADHD) may be explained by the differential expression of dopamine-related genes in the brain. Li Q; Lu G; Antonio GE; Mak YT; Rudd JA; Fan M; Yew DT Neurochem Int; 2007 May; 50(6):848-57. PubMed ID: 17395336 [TBL] [Abstract][Full Text] [Related]
14. Clozapine decreases exploratory activity and increases anxiety-like behaviour in the Wistar-Kyoto rat but not the spontaneously hypertensive rat model of attention-deficit/hyperactivity disorder. Mc Fie S; Sterley TL; Howells FM; Russell VA Brain Res; 2012 Jul; 1467():91-103. PubMed ID: 22658977 [TBL] [Abstract][Full Text] [Related]
15. Hypodopaminergic and hypernoradrenergic activity in prefrontal cortex slices of an animal model for attention-deficit hyperactivity disorder--the spontaneously hypertensive rat. Russell VA Behav Brain Res; 2002 Mar; 130(1-2):191-6. PubMed ID: 11864734 [TBL] [Abstract][Full Text] [Related]
16. [Towards an understanding of the molecular mechanisms underlying the pharmacological treatments of attention deficit hyperactivity disorder]. Castellanos FX; Acosta MT Rev Neurol; 2011 Mar; 52 Suppl 1():S155-60. PubMed ID: 21365598 [TBL] [Abstract][Full Text] [Related]
17. Antidepressant-like effects of novel triple reuptake inhibitors, PRC025 and PRC050. Shaw AM; Boules M; Zhang Y; Williams K; Robinson J; Carlier PR; Richelson E Eur J Pharmacol; 2007 Jan; 555(1):30-6. PubMed ID: 17109850 [TBL] [Abstract][Full Text] [Related]
18. 5,7-Dihydroxy-6-methoxy-4'-phenoxyflavone, a derivative of oroxylin A improves attention-deficit/hyperactivity disorder (ADHD)-like behaviors in spontaneously hypertensive rats. dela Peña IC; Young Yoon S; Kim Y; Park H; Man Kim K; Hoon Ryu J; Young Shin C; Hoon Cheong J Eur J Pharmacol; 2013 Sep; 715(1-3):337-44. PubMed ID: 23707903 [TBL] [Abstract][Full Text] [Related]