BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 23376613)

  • 1. AutoMap: a tool for analyzing protein-ligand recognition using multiple ligand binding modes.
    Agostino M; Mancera RL; Ramsland PA; Yuriev E
    J Mol Graph Model; 2013 Mar; 40():80-90. PubMed ID: 23376613
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antibody-Carbohydrate Recognition from Docked Ensembles Using the AutoMap Procedure.
    Dingjan T; Agostino M; Ramsland PA; Yuriev E
    Methods Mol Biol; 2015; 1331():41-55. PubMed ID: 26169734
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rational automatic search method for stable docking models of protein and ligand.
    Mizutani MY; Tomioka N; Itai A
    J Mol Biol; 1994 Oct; 243(2):310-26. PubMed ID: 7932757
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NMR investigations of protein-carbohydrate interactions: studies on the relevance of Trp/Tyr variations in lectin binding sites as deduced from titration microcalorimetry and NMR studies on hevein domains. Determination of the NMR structure of the complex between pseudohevein and N,N',N"-triacetylchitotriose.
    Asensio JL; Siebert HC; von Der Lieth CW; Laynez J; Bruix M; Soedjanaamadja UM; Beintema JJ; Cañada FJ; Gabius HJ; Jiménez-Barbero J
    Proteins; 2000 Aug; 40(2):218-36. PubMed ID: 10842338
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solvent structure improves docking prediction in lectin-carbohydrate complexes.
    Gauto DF; Petruk AA; Modenutti CP; Blanco JI; Di Lella S; Martí MA
    Glycobiology; 2013 Feb; 23(2):241-58. PubMed ID: 23089616
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development and application of site mapping methods for the design of glycosaminoglycans.
    Agostino M; Gandhi NS; Mancera RL
    Glycobiology; 2014 Sep; 24(9):840-51. PubMed ID: 24859723
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular docking of carbohydrate ligands to antibodies: structural validation against crystal structures.
    Agostino M; Jene C; Boyle T; Ramsland PA; Yuriev E
    J Chem Inf Model; 2009 Dec; 49(12):2749-60. PubMed ID: 19994843
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phage display screening against a set of targets to establish peptide-based sugar mimetics and molecular docking to predict binding site.
    Yu L; Yu PS; Yee Yen Mui E; McKelvie JC; Pham TP; Yap YW; Wong WQ; Wu J; Deng W; Orner BP
    Bioorg Med Chem; 2009 Jul; 17(13):4825-32. PubMed ID: 19447041
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ensemble docking of multiple protein structures: considering protein structural variations in molecular docking.
    Huang SY; Zou X
    Proteins; 2007 Feb; 66(2):399-421. PubMed ID: 17096427
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Docking ligands onto binding site representations derived from proteins built by homology modelling.
    Schafferhans A; Klebe G
    J Mol Biol; 2001 Mar; 307(1):407-27. PubMed ID: 11243828
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ph4Dock: pharmacophore-based protein-ligand docking.
    Goto J; Kataoka R; Hirayama N
    J Med Chem; 2004 Dec; 47(27):6804-11. PubMed ID: 15615529
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SuperStar: improved knowledge-based interaction fields for protein binding sites.
    Verdonk ML; Cole JC; Watson P; Gillet V; Willett P
    J Mol Biol; 2001 Mar; 307(3):841-59. PubMed ID: 11273705
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Knowledge-based scoring functions in drug design: 3. A two-dimensional knowledge-based hydrogen-bonding potential for the prediction of protein-ligand interactions.
    Zheng M; Xiong B; Luo C; Li S; Liu X; Shen Q; Li J; Zhu W; Luo X; Jiang H
    J Chem Inf Model; 2011 Nov; 51(11):2994-3004. PubMed ID: 21999432
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple ligand simultaneous docking: orchestrated dancing of ligands in binding sites of protein.
    Li H; Li C
    J Comput Chem; 2010 Jul; 31(10):2014-22. PubMed ID: 20166125
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Computer drug design based on analysis of a target macromolecule structure. I. Search and description of a ligand binding site in a target molecule].
    Ivanov AS; Dubanov AV; Skvortsov VS; Archakov AI
    Vopr Med Khim; 2002; 48(3):304-15. PubMed ID: 12243090
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient virtual screening using multiple protein conformations described as negative images of the ligand-binding site.
    Virtanen SI; Pentikäinen OT
    J Chem Inf Model; 2010 Jun; 50(6):1005-11. PubMed ID: 20504004
    [TBL] [Abstract][Full Text] [Related]  

  • 17. FlexE: efficient molecular docking considering protein structure variations.
    Claussen H; Buning C; Rarey M; Lengauer T
    J Mol Biol; 2001 Apr; 308(2):377-95. PubMed ID: 11327774
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Peptide inhibitors of xenoreactive antibodies mimic the interaction profile of the native carbohydrate antigens.
    Agostino M; Sandrin MS; Thompson PE; Ramsland PA; Yuriev E
    Biopolymers; 2011; 96(2):193-206. PubMed ID: 20564023
    [TBL] [Abstract][Full Text] [Related]  

  • 19. HierVLS hierarchical docking protocol for virtual ligand screening of large-molecule databases.
    Floriano WB; Vaidehi N; Zamanakos G; Goddard WA
    J Med Chem; 2004 Jan; 47(1):56-71. PubMed ID: 14695820
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Q-SiteFinder: an energy-based method for the prediction of protein-ligand binding sites.
    Laurie AT; Jackson RM
    Bioinformatics; 2005 May; 21(9):1908-16. PubMed ID: 15701681
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.