These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 23376624)

  • 1. Myoglobin-dependent O2 consumption of the hypoxic trout heart.
    Helbo S; Fago A; Gesser H
    Comp Biochem Physiol A Mol Integr Physiol; 2013 May; 165(1):40-5. PubMed ID: 23376624
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Roles of nitric oxide, nitrite and myoglobin on myocardial efficiency in trout (Oncorhynchus mykiss) and goldfish (Carassius auratus): implications for hypoxia tolerance.
    Pedersen CL; Faggiano S; Helbo S; Gesser H; Fago A
    J Exp Biol; 2010 Aug; 213(Pt 16):2755-62. PubMed ID: 20675545
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression patterns and adaptive functional diversity of vertebrate myoglobins.
    Helbo S; Weber RE; Fago A
    Biochim Biophys Acta; 2013 Sep; 1834(9):1832-9. PubMed ID: 23388387
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Allosteric modulation by S-nitrosation in the low-O₂ affinity myoglobin from rainbow trout.
    Helbo S; Fago A
    Am J Physiol Regul Integr Comp Physiol; 2011 Jan; 300(1):R101-8. PubMed ID: 20962203
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Myoglobin translational diffusion in rat myocardium and its implication on intracellular oxygen transport.
    Lin PC; Kreutzer U; Jue T
    J Physiol; 2007 Jan; 578(Pt 2):595-603. PubMed ID: 17038435
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxygen-linked S-nitrosation in fish myoglobins: a cysteine-specific tertiary allosteric effect.
    Helbo S; Gow AJ; Jamil A; Howes BD; Smulevich G; Fago A
    PLoS One; 2014; 9(5):e97012. PubMed ID: 24879536
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of hypoxic acclimation, muscle strain, and contraction frequency on nitric oxide-mediated myocardial performance in steelhead trout (
    Carnevale C; Syme DA; Gamperl AK
    Am J Physiol Regul Integr Comp Physiol; 2021 May; 320(5):R588-R610. PubMed ID: 33501888
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biological plausibility for carbon monoxide as a copollutant in PM epidemiologic studies.
    McGrath JJ
    Inhal Toxicol; 2000; 12 Suppl 4():91-107. PubMed ID: 12881888
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in NO bioavailability regulate cardiac O2 consumption: control by intramitochondrial SOD2 and intracellular myoglobin.
    Li W; Jue T; Edwards J; Wang X; Hintze TH
    Am J Physiol Heart Circ Physiol; 2004 Jan; 286(1):H47-54. PubMed ID: 12919935
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Implication of CO inactivation on myoglobin function.
    Chung Y; Huang SJ; Glabe A; Jue T
    Am J Physiol Cell Physiol; 2006 Jun; 290(6):C1616-24. PubMed ID: 16421206
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of carbon monoxide on respiration.
    Haab P
    Experientia; 1990 Dec; 46(11-12):1202-6. PubMed ID: 2174793
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitric oxide, cytochrome-c oxidase and myoglobin.
    Brunori M
    Trends Biochem Sci; 2001 Jan; 26(1):21-3. PubMed ID: 11165512
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nitric oxide increases myocardial efficiency in the hypoxia-tolerant turtle Trachemys scripta.
    Misfeldt M; Fago A; Gesser H
    J Exp Biol; 2009 Apr; 212(Pt 7):954-60. PubMed ID: 19282492
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cytochrome c oxidase maintains mitochondrial respiration during partial inhibition by nitric oxide.
    Palacios-Callender M; Hollis V; Frakich N; Mateo J; Moncada S
    J Cell Sci; 2007 Jan; 120(Pt 1):160-5. PubMed ID: 17164295
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction between myoglobin and mitochondria in rat skeletal muscle.
    Yamada T; Furuichi Y; Takakura H; Hashimoto T; Hanai Y; Jue T; Masuda K
    J Appl Physiol (1985); 2013 Feb; 114(4):490-7. PubMed ID: 23195625
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A defect of neuronal nitric oxide synthase increases xanthine oxidase-derived superoxide anion and attenuates the control of myocardial oxygen consumption by nitric oxide derived from endothelial nitric oxide synthase.
    Kinugawa S; Huang H; Wang Z; Kaminski PM; Wolin MS; Hintze TH
    Circ Res; 2005 Feb; 96(3):355-62. PubMed ID: 15637297
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Function of myoglobin in oxygen consumption by isolated perfused fish hearts.
    Bailey JR; Driedzic WR
    Am J Physiol; 1986 Dec; 251(6 Pt 2):R1144-50. PubMed ID: 3789196
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Force development, energy state and ATP production of cardiac muscle from turtles and trout during normoxia and severe hypoxia.
    Overgaard J; Gesser H
    J Exp Biol; 2004 May; 207(Pt 11):1915-24. PubMed ID: 15107445
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential requirements of calcium for oxoglutarate dehydrogenase and mitochondrial nitric-oxide synthase under hypoxia: impact on the regulation of mitochondrial oxygen consumption.
    Solien J; Haynes V; Giulivi C
    Comp Biochem Physiol A Mol Integr Physiol; 2005 Oct; 142(2):111-7. PubMed ID: 15972265
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cardiac nitric oxide scavenging: role of myoglobin and mitochondria.
    Giles AV; Edwards L; Covian R; Lucotte BM; Balaban RS
    J Physiol; 2024 Jan; 602(1):73-91. PubMed ID: 38041645
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.