These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 23376643)

  • 1. Neural field theory of calcium dependent plasticity with applications to transcranial magnetic stimulation.
    Fung PK; Robinson PA
    J Theor Biol; 2013 May; 324():72-83. PubMed ID: 23376643
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calcium dependent plasticity applied to repetitive transcranial magnetic stimulation with a neural field model.
    Wilson MT; Fung PK; Robinson PA; Shemmell J; Reynolds JN
    J Comput Neurosci; 2016 Aug; 41(1):107-25. PubMed ID: 27259518
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural field theory of synaptic metaplasticity with applications to theta burst stimulation.
    Fung PK; Robinson PA
    J Theor Biol; 2014 Jan; 340():164-76. PubMed ID: 24060620
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of inhibition and triplets of excitatory spikes modulates the NMDA-R-mediated synaptic plasticity in a computational model of spike timing-dependent plasticity.
    Cutsuridis V
    Hippocampus; 2013 Jan; 23(1):75-86. PubMed ID: 22851353
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A biophysical basis for the inter-spike interaction of spike-timing-dependent plasticity.
    Shah NT; Yeung LC; Cooper LN; Cai Y; Shouval HZ
    Biol Cybern; 2006 Aug; 95(2):113-21. PubMed ID: 16691393
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calcium time course as a signal for spike-timing-dependent plasticity.
    Rubin JE; Gerkin RC; Bi GQ; Chow CC
    J Neurophysiol; 2005 May; 93(5):2600-13. PubMed ID: 15625097
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms and significance of spike-timing dependent plasticity.
    Karmarkar UR; Najarian MT; Buonomano DV
    Biol Cybern; 2002 Dec; 87(5-6):373-82. PubMed ID: 12461627
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calcium dynamics predict direction of synaptic plasticity in striatal spiny projection neurons.
    Jędrzejewska-Szmek J; Damodaran S; Dorman DB; Blackwell KT
    Eur J Neurosci; 2017 Apr; 45(8):1044-1056. PubMed ID: 27233469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reducing the variability of neural responses: a computational theory of spike-timing-dependent plasticity.
    Bohte SM; Mozer MC
    Neural Comput; 2007 Feb; 19(2):371-403. PubMed ID: 17206869
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural field theory of synaptic plasticity.
    Robinson PA
    J Theor Biol; 2011 Sep; 285(1):156-63. PubMed ID: 21767551
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inducing homeostatic-like plasticity in human motor cortex through converging corticocortical inputs.
    Pötter-Nerger M; Fischer S; Mastroeni C; Groppa S; Deuschl G; Volkmann J; Quartarone A; Münchau A; Siebner HR
    J Neurophysiol; 2009 Dec; 102(6):3180-90. PubMed ID: 19726723
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A calcium-based simple model of multiple spike interactions in spike-timing-dependent plasticity.
    Uramoto T; Torikai H
    Neural Comput; 2013 Jul; 25(7):1853-69. PubMed ID: 23607556
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A temporally asymmetric Hebbian rule governing plasticity in the human motor cortex.
    Wolters A; Sandbrink F; Schlottmann A; Kunesch E; Stefan K; Cohen LG; Benecke R; Classen J
    J Neurophysiol; 2003 May; 89(5):2339-45. PubMed ID: 12612033
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcranial magnetic stimulation and synaptic plasticity: experimental framework and human models.
    Thickbroom GW
    Exp Brain Res; 2007 Jul; 180(4):583-93. PubMed ID: 17562028
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heat-evoked experimental pain induces long-term potentiation-like plasticity in human primary motor cortex.
    Suppa A; Biasiotta A; Belvisi D; Marsili L; La Cesa S; Truini A; Cruccu G; Berardelli A
    Cereb Cortex; 2013 Aug; 23(8):1942-51. PubMed ID: 22744704
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Occlusion of bidirectional plasticity by preceding low-frequency stimulation in the human motor cortex.
    Delvendahl I; Jung NH; Mainberger F; Kuhnke NG; Cronjaeger M; Mall V
    Clin Neurophysiol; 2010 Apr; 121(4):594-602. PubMed ID: 20074998
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spiking neurons, dopamine, and plasticity: timing is everything, but concentration also matters.
    Thivierge JP; Rivest F; Monchi O
    Synapse; 2007 Jun; 61(6):375-90. PubMed ID: 17372980
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical modelling of plasticity induced by transcranial magnetic stimulation.
    Wilson MT; Goodwin DP; Brownjohn PW; Shemmell J; Reynolds JN
    J Comput Neurosci; 2014 Jun; 36(3):499-514. PubMed ID: 24150916
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of deviation from precise balance of spike-timing-dependent plasticity.
    Matsumoto N; Okada M
    Neural Netw; 2004 Sep; 17(7):917-24. PubMed ID: 15312835
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pallidal stimulation modifies after-effects of paired associative stimulation on motor cortex excitability in primary generalised dystonia.
    Tisch S; Rothwell JC; Bhatia KP; Quinn N; Zrinzo L; Jahanshahi M; Ashkan K; Hariz M; Limousin P
    Exp Neurol; 2007 Jul; 206(1):80-5. PubMed ID: 17498697
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.