BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 23376654)

  • 1. Synergy as design principle for metabolic engineering of 1-propanol production in Escherichia coli.
    Shen CR; Liao JC
    Metab Eng; 2013 May; 17():12-22. PubMed ID: 23376654
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of citramalate by metabolically engineered Escherichia coli.
    Wu X; Eiteman MA
    Biotechnol Bioeng; 2016 Dec; 113(12):2670-2675. PubMed ID: 27316562
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic engineering of the 2-ketobutyrate biosynthetic pathway for 1-propanol production in Saccharomyces cerevisiae.
    Nishimura Y; Matsui T; Ishii J; Kondo A
    Microb Cell Fact; 2018 Mar; 17(1):38. PubMed ID: 29523149
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic engineering of Escherichia coli for the production of 1-propanol.
    Choi YJ; Park JH; Kim TY; Lee SY
    Metab Eng; 2012 Sep; 14(5):477-86. PubMed ID: 22871504
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identifying metabolic elements that contribute to productivity of 1-propanol bioproduction using metabolomic analysis.
    Putri SP; Nakayama Y; Shen C; Noguchi S; Nitta K; Bamba T; Pontrelli S; Liao J; Fukusaki E
    Metabolomics; 2018 Jul; 14(7):96. PubMed ID: 30830363
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synergy between methylerythritol phosphate pathway and mevalonate pathway for isoprene production in Escherichia coli.
    Yang C; Gao X; Jiang Y; Sun B; Gao F; Yang S
    Metab Eng; 2016 Sep; 37():79-91. PubMed ID: 27174717
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic engineering of Escherichia coli for 1-butanol and 1-propanol production via the keto-acid pathways.
    Shen CR; Liao JC
    Metab Eng; 2008 Nov; 10(6):312-20. PubMed ID: 18775501
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineered citrate synthase improves citramalic acid generation in Escherichia coli.
    Wu X; Tovilla-Coutiño DB; Eiteman MA
    Biotechnol Bioeng; 2020 Sep; 117(9):2781-2790. PubMed ID: 32497258
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Model-based metabolic engineering enables high yield itaconic acid production by Escherichia coli.
    Harder BJ; Bettenbrock K; Klamt S
    Metab Eng; 2016 Nov; 38():29-37. PubMed ID: 27269589
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Eliminating acetate formation improves citramalate production by metabolically engineered Escherichia coli.
    Parimi NS; Durie IA; Wu X; Niyas AMM; Eiteman MA
    Microb Cell Fact; 2017 Jun; 16(1):114. PubMed ID: 28637476
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancement of malate production through engineering of the periplasmic rTCA pathway in Escherichia coli.
    Guo L; Zhang F; Zhang C; Hu G; Gao C; Chen X; Liu L
    Biotechnol Bioeng; 2018 Jun; 115(6):1571-1580. PubMed ID: 29476618
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Systematic engineering of TCA cycle for optimal production of a four-carbon platform chemical 4-hydroxybutyric acid in Escherichia coli.
    Choi S; Kim HU; Kim TY; Lee SY
    Metab Eng; 2016 Nov; 38():264-273. PubMed ID: 27663752
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic engineering of Escherichia coli for efficient free fatty acid production from glycerol.
    Wu H; Karanjikar M; San KY
    Metab Eng; 2014 Sep; 25():82-91. PubMed ID: 25014174
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production of α-ketobutyrate using engineered Escherichia coli via temperature shift.
    Zhang C; Qi J; Li Y; Fan X; Xu Q; Chen N; Xie X
    Biotechnol Bioeng; 2016 Sep; 113(9):2054-9. PubMed ID: 26917255
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Systematically engineering Escherichia coli for enhanced production of 1,2-propanediol and 1-propanol.
    Jain R; Sun X; Yuan Q; Yan Y
    ACS Synth Biol; 2015 Jun; 4(6):746-56. PubMed ID: 25490349
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering of Escherichia coli for Krebs cycle-dependent production of malic acid.
    Trichez D; Auriol C; Baylac A; Irague R; Dressaire C; Carnicer-Heras M; Heux S; François JM; Walther T
    Microb Cell Fact; 2018 Jul; 17(1):113. PubMed ID: 30012131
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering Escherichia coli for methanol-dependent growth on glucose for metabolite production.
    Bennett RK; Dillon M; Gerald Har JR; Agee A; von Hagel B; Rohlhill J; Antoniewicz MR; Papoutsakis ET
    Metab Eng; 2020 Jul; 60():45-55. PubMed ID: 32179162
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic engineering of Escherichia coli for the production of fumaric acid.
    Song CW; Kim DI; Choi S; Jang JW; Lee SY
    Biotechnol Bioeng; 2013 Jul; 110(7):2025-34. PubMed ID: 23436277
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In silico screening of triple reaction knockout Escherichia coli strains for overproduction of useful metabolites.
    Ohno S; Furusawa C; Shimizu H
    J Biosci Bioeng; 2013 Feb; 115(2):221-8. PubMed ID: 23041138
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic engineering of Escherichia coli for production of butyric acid.
    Saini M; Wang ZW; Chiang CJ; Chao YP
    J Agric Food Chem; 2014 May; 62(19):4342-8. PubMed ID: 24773075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.