These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 233768)

  • 1. Cellular recognition by rat liver cells of neuraminidase-treated erythrocytes. Demonstration and analysis of cell contacts.
    Kolb H; Schudt C; Kolb-Bachofen V; Kolb HA
    Exp Cell Res; 1978 May; 113(2):319-25. PubMed ID: 233768
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of lectin-dependent recognition of desialylated erythrocytes by Kupffer cells.
    Schlepper-Schäfer J; Kolb-Bachofen V; Kolb H
    Biochem J; 1980 Mar; 186(3):827-31. PubMed ID: 7396839
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Red cell aging results in a change of cell surface carbohydrate epitopes allowing for recognition by galactose-specific receptors of rat liver macrophages.
    Schlepper-Schäfer J; Kolb-Bachofen V
    Blood Cells; 1988; 14(1):259-74. PubMed ID: 2460164
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Involvement of membrane galactose in the in vivo and in vitro sequestration of desialylated erythrocytes.
    Müller E; Franco MW; Schauer R
    Hoppe Seylers Z Physiol Chem; 1981 Dec; 362(12):1615-20. PubMed ID: 7319475
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Participation of D-galactose-specific receptors of liver macrophages in recognition of fibronectin-opsonized particles.
    Kolb-Bachofen V; Abel F
    Carbohydr Res; 1991 Jun; 213():201-13. PubMed ID: 1657387
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recognition of xenogeneic erythrocytes: the GalNAc/Gal-particle receptor of rat liver macrophages mediates or participates in recognition.
    Mohr M; Kolb H; Kolb-Bachofen V; Schlepper-Schäfer J
    Biol Cell; 1987; 60(3):217-24. PubMed ID: 2827820
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lectin mediates homing of sialidase-treated erythrocytes of the liver as revealed by scintigraphy.
    Kolb H; Friedrich E; Süss R
    Hoppe Seylers Z Physiol Chem; 1981 Dec; 362(12):1609-14. PubMed ID: 7319474
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of carbohydrates in rat leukemia cell-liver macrophage cell contacts.
    Schlepper-Schäfer J; Holl N; Kolb-Bachofen V; Friedrich E; Kolb H
    Biol Cell; 1984; 52(3):253-8. PubMed ID: 6241836
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adhesion, phagocytosis and cell surface energy. The binding of fixed human erythrocytes to rat macrophages and polymethylpentene.
    Gerson DF; Capo C; Benoliel AM; Bongrand P
    Biochim Biophys Acta; 1982 Oct; 692(1):147-56. PubMed ID: 7171584
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell surface carbohydrate recognition and the viability of erythrocytes in circulation.
    Aminoff D; Bell WC; VorderBruegge WG
    Prog Clin Biol Res; 1978; 23():569-81. PubMed ID: 662920
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pregnancy-related changes of galactose recognition system on sinusoidal rat liver cells.
    Dini L; Vinzani R; Conti Devirgiliis L
    Cell Mol Biol; 1989; 35(6):603-10. PubMed ID: 2560679
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hepatic receptor for asialo-glycoproteins. Ultrastructural demonstration of ligand-induced microaggregation of receptors.
    Kolb-Bachofen V
    Biochim Biophys Acta; 1981 Jul; 645(2):293-9. PubMed ID: 6268158
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reversible binding of sialidase-treated rat lymphocytes by homologous peritoneal macrophages.
    Fischer C; Kelm S; Ruch B; Schauer R
    Carbohydr Res; 1991 Jun; 213():263-73. PubMed ID: 1657388
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Brucella sp. bind to sialic acid residues on human and animal red blood cells.
    del C Rocha-Gracia R; Castañeda-Roldán EI; Giono-Cerezo S; Girón JA
    FEMS Microbiol Lett; 2002 Aug; 213(2):219-24. PubMed ID: 12167541
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clearance of circulating gamma-glutamyltransferase by the hepatic galactose receptor. Variability in clearance rate due to carbohydrate heterogeneity of the enzyme.
    Huseby NE; Mortensen B; Smedsrød B
    Biochim Biophys Acta; 1993 Mar; 1156(3):283-7. PubMed ID: 8096396
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adhesion of human red blood cells to polystyrene. Influence of sodium chloride concentration and of neuraminidase treatment.
    Horisberger M
    Experientia; 1979 May; 35(5):612-4. PubMed ID: 446652
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuraminidase "unmasking" and failure of trypsin to "unmask" -D-galactose-like sites on erythrocyte, lymphoma, and normal and virus-transformed fibroblast cell membranes.
    Nicolson GL
    J Natl Cancer Inst; 1973 Jun; 50(6):1443-51. PubMed ID: 4352200
    [No Abstract]   [Full Text] [Related]  

  • 18. The lateral separation of contacts on erythrocytes agglutinated by polylysine.
    Thomas NE; Coakley WT; Akay G
    Cell Biophys; 1992; 20(2-3):125-47. PubMed ID: 1285296
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exposure of major neutral glycolipids in red cells to galactose oxidase. Effect of neuraminidase.
    Lampio A; Rauvala H; Gahmberg CG
    Eur J Biochem; 1986 Jun; 157(3):611-6. PubMed ID: 3720746
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A membrane-bound form of the acute-phase protein C-reactive protein is the galactose-specific particle receptor on rat liver macrophages.
    Kolb-Bachofen V
    Pathobiology; 1991; 59(4):272-5. PubMed ID: 1652973
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.