These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 23376835)

  • 21. Evaluation of lignocellulosic wastes for production of edible mushrooms.
    Rani P; Kalyani N; Prathiba K
    Appl Biochem Biotechnol; 2008 Dec; 151(2-3):151-9. PubMed ID: 18327544
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of ligninolytic axenic and coculture white-rot fungi on rice straw chemical composition and in vitro fermentation characteristics.
    Datsomor O; Gou-Qi Z; Miao L
    Sci Rep; 2022 Jan; 12(1):1129. PubMed ID: 35064211
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Synergistic Action of Electro-Fenton and White-Rot Fungi in the Degradation of Lignin.
    Hou L; Ji D; Dong W; Yuan L; Zhang F; Li Y; Zang L
    Front Bioeng Biotechnol; 2020; 8():99. PubMed ID: 32226782
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparison of submerged and solid state pretreatment of sugarcane bagasse by Pandoraea sp. ISTKB: Enzymatic and structural analysis.
    Kumar M; Singhal A; Thakur IS
    Bioresour Technol; 2016 Mar; 203():18-25. PubMed ID: 26720135
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Degradation of bisphenol A by the lignin-degrading enzyme, manganese peroxidase, produced by the white-rot basidiomycete, Pleurotus ostreatus.
    Hirano T; Honda Y; Watanabe T; Kuwahara M
    Biosci Biotechnol Biochem; 2000 Sep; 64(9):1958-62. PubMed ID: 11055402
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Degradation of xenobiotic compounds by lignin-degrading white-rot fungi: enzymology and mechanisms involved.
    Christian V; Shrivastava R; Shukla D; Modi HA; Vyas BR
    Indian J Exp Biol; 2005 Apr; 43(4):301-12. PubMed ID: 15875713
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Lignocellulosic residues: biodegradation and bioconversion by fungi.
    Sánchez C
    Biotechnol Adv; 2009; 27(2):185-94. PubMed ID: 19100826
    [TBL] [Abstract][Full Text] [Related]  

  • 28. iTRAQ-based quantitative secretome analysis of Phanerochaete chrysosporium.
    Manavalan A; Adav SS; Sze SK
    J Proteomics; 2011 Dec; 75(2):642-54. PubMed ID: 21945728
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cooperation between ligninolytic enzymes produced by superior mixed flora.
    Wang HL; Li ZY; Guo WY; Wang ZY; Pan F
    J Environ Sci (China); 2005; 17(4):620-2. PubMed ID: 16158591
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Promising cellulolytic fungi isolates for rice straw degradation.
    Pedraza-Zapata DC; Sánchez-Garibello AM; Quevedo-Hidalgo B; Moreno-Sarmiento N; Gutiérrez-Rojas I
    J Microbiol; 2017 Sep; 55(9):711-719. PubMed ID: 28865071
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biodegradation of lignocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin.
    Martínez AT; Speranza M; Ruiz-Dueñas FJ; Ferreira P; Camarero S; Guillén F; Martínez MJ; Gutiérrez A; del Río JC
    Int Microbiol; 2005 Sep; 8(3):195-204. PubMed ID: 16200498
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mycelial growth and solid-state fermentation of lignocellulosic waste by white-rot fungus Phanerochaete chrysosporium under lead stress.
    Huang DL; Zeng GM; Feng CL; Hu S; Zhao MH; Lai C; Zhang Y; Jiang XY; Liu HL
    Chemosphere; 2010 Nov; 81(9):1091-7. PubMed ID: 20951406
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Solid state fermentation of Achras zapota lignocellulose by Phanerochaete chrysosporium.
    Ganesh Kumar A; Sekaran G; Krishnamoorthy S
    Bioresour Technol; 2006 Sep; 97(13):1521-8. PubMed ID: 16122921
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparative production of ligninolytic enzymes by Phanerochaete chrysosporium and Polyporus sanguineus.
    Bajwa PK; Arora DS
    Can J Microbiol; 2009 Dec; 55(12):1397-402. PubMed ID: 20029532
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biodegradation of wheat straw by Pleurotus ostreatus.
    Pandey VK; Singh MP
    Cell Mol Biol (Noisy-le-grand); 2014 Dec; 60(5):29-34. PubMed ID: 25535709
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparative metagenomic analysis of microcosm structures and lignocellulolytic enzyme systems of symbiotic biomass-degrading consortia.
    Wongwilaiwalin S; Laothanachareon T; Mhuantong W; Tangphatsornruang S; Eurwilaichitr L; Igarashi Y; Champreda V
    Appl Microbiol Biotechnol; 2013 Oct; 97(20):8941-54. PubMed ID: 23381385
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biodegradation of brassica haulms by white rot fungus Pleurotus eryngii.
    Singh MP; Pandey VK; Srivastava AK; Viswakarma SK
    Cell Mol Biol (Noisy-le-grand); 2011 Feb; 57(1):47-55. PubMed ID: 21366962
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biodegradation of Nigerian wood wastes by Pleurotus tuber-regium (Fries) Singer.
    Jonathan SG; Fasidi IO; Ajayi AO; Adegeye O
    Bioresour Technol; 2008 Mar; 99(4):807-11. PubMed ID: 17391957
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bioremediation of paper and pulp mill effluents.
    Murugesan K
    Indian J Exp Biol; 2003 Nov; 41(11):1239-48. PubMed ID: 15332490
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lignin degradation by selected fungal species.
    Knežević A; Milovanović I; Stajić M; Lončar N; Brčeski I; Vukojević J; Cilerdžić J
    Bioresour Technol; 2013 Jun; 138():117-23. PubMed ID: 23612169
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.