BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 23376846)

  • 1. Heparin-binding epidermal growth factor-like growth factor eliminates constraints on activated Kras to promote rapid onset of pancreatic neoplasia.
    Ray KC; Moss ME; Franklin JL; Weaver CJ; Higginbotham J; Song Y; Revetta FL; Blaine SA; Bridges LR; Guess KE; Coffey RJ; Crawford HC; Washington MK; Means AL
    Oncogene; 2014 Feb; 33(7):823-31. PubMed ID: 23376846
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Axl-mediated activation of TBK1 drives epithelial plasticity in pancreatic cancer.
    Cruz VH; Arner EN; Du W; Bremauntz AE; Brekken RA
    JCI Insight; 2019 Apr; 5(9):. PubMed ID: 30938713
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of pancreatic cancer growth by superoxide.
    Du J; Nelson ES; Simons AL; Olney KE; Moser JC; Schrock HE; Wagner BA; Buettner GR; Smith BJ; Teoh ML; Tsao MS; Cullen JJ
    Mol Carcinog; 2013 Jul; 52(7):555-67. PubMed ID: 22392697
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ATM-deficiency increases genomic instability and metastatic potential in a mouse model of pancreatic cancer.
    Drosos Y; Escobar D; Chiang MY; Roys K; Valentine V; Valentine MB; Rehg JE; Sahai V; Begley LA; Ye J; Paul L; McKinnon PJ; Sosa-Pineda B
    Sci Rep; 2017 Sep; 7(1):11144. PubMed ID: 28894253
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A KrasG12D-driven genetic mouse model of pancreatic cancer requires glypican-1 for efficient proliferation and angiogenesis.
    Whipple CA; Young AL; Korc M
    Oncogene; 2012 May; 31(20):2535-44. PubMed ID: 21996748
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chronic jetlag accelerates pancreatic neoplasia in conditional
    Schwartz PB; Walcheck MT; Nukaya M; Pavelec DM; Matkowskyj KA; Ronnekleiv-Kelly SM
    Chronobiol Int; 2023 Apr; 40(4):417-437. PubMed ID: 36912021
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Autocrine IGF1 Signaling Mediates Pancreatic Tumor Cell Dormancy in the Absence of Oncogenic Drivers.
    Rajbhandari N; Lin WC; Wehde BL; Triplett AA; Wagner KU
    Cell Rep; 2017 Feb; 18(9):2243-2255. PubMed ID: 28249168
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tff2 defines transit-amplifying pancreatic acinar progenitors that lack regenerative potential and are protective against Kras-driven carcinogenesis.
    Jiang Z; Wu F; Laise P; Takayuki T; Na F; Kim W; Kobayashi H; Chang W; Takahashi R; Valenti G; Sunagawa M; White RA; Macchini M; Renz BW; Middelhoff M; Hayakawa Y; Dubeykovskaya ZA; Tan X; Chu TH; Nagar K; Tailor Y; Belin BR; Anand A; Asfaha S; Finlayson MO; Iuga AC; Califano A; Wang TC
    Cell Stem Cell; 2023 Aug; 30(8):1091-1109.e7. PubMed ID: 37541213
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Mir181ab1 cluster promotes KRAS-driven oncogenesis and progression in lung and pancreas.
    Valencia K; Erice O; Kostyrko K; Hausmann S; Guruceaga E; Tathireddy A; Flores NM; Sayles LC; Lee AG; Fragoso R; Sun TQ; Vallejo A; Roman M; Entrialgo-Cadierno R; Migueliz I; Razquin N; Fortes P; Lecanda F; Lu J; Ponz-Sarvise M; Chen CZ; Mazur PK; Sweet-Cordero EA; Vicent S
    J Clin Invest; 2020 Apr; 130(4):1879-1895. PubMed ID: 31874105
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Screening Metabolic Biomarkers in
    Liu Q; Lan J; Martínez-Jarquín S; Ge W; Zenobi R
    Anal Chem; 2024 Mar; 96(12):4918-4924. PubMed ID: 38471062
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oncogenic KRASG12D Reprograms Lipid Metabolism by Upregulating SLC25A1 to Drive Pancreatic Tumorigenesis.
    Zhang R; Peng X; Du JX; Boohaker R; Estevao IL; Grajeda BI; Cox MB; Almeida IC; Lu W
    Cancer Res; 2023 Nov; 83(22):3739-3752. PubMed ID: 37695315
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pancreatic cancer is marked by complement-high blood monocytes and tumor-associated macrophages.
    Kemp SB; Steele NG; Carpenter ES; Donahue KL; Bushnell GG; Morris AH; The S; Orbach SM; Sirihorachai VR; Nwosu ZC; Espinoza C; Lima F; Brown K; Girgis AA; Gunchick V; Zhang Y; Lyssiotis CA; Frankel TL; Bednar F; Rao A; Sahai V; Shea LD; Crawford HC; Pasca di Magliano M
    Life Sci Alliance; 2021 Jun; 4(6):. PubMed ID: 33782087
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dclk1 Defines Quiescent Pancreatic Progenitors that Promote Injury-Induced Regeneration and Tumorigenesis.
    Westphalen CB; Takemoto Y; Tanaka T; Macchini M; Jiang Z; Renz BW; Chen X; Ormanns S; Nagar K; Tailor Y; May R; Cho Y; Asfaha S; Worthley DL; Hayakawa Y; Urbanska AM; Quante M; Reichert M; Broyde J; Subramaniam PS; Remotti H; Su GH; Rustgi AK; Friedman RA; Honig B; Califano A; Houchen CW; Olive KP; Wang TC
    Cell Stem Cell; 2016 Apr; 18(4):441-55. PubMed ID: 27058937
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generation of focal mutations and large genomic deletions in the pancreas using inducible in vivo genome editing.
    Mishra A; Emamgholi F; Erlangga Z; Hartleben B; Unger K; Wolff K; Teichmann U; Kessel M; Woller N; Kühnel F; Dow LE; Manns MP; Vogel A; Lowe SW; Saborowski A; Saborowski M
    Carcinogenesis; 2020 May; 41(3):334-344. PubMed ID: 31170286
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A senescence restriction point acting on chromatin integrates oncogenic signals.
    Lopes-Paciencia S; Bourdeau V; Rowell MC; Amirimehr D; Guillon J; Kalegari P; Barua A; Quoc-Huy Trinh V; Azzi F; Turcotte S; Serohijos A; Ferbeyre G
    Cell Rep; 2024 Apr; 43(4):114044. PubMed ID: 38568812
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The astrocyte-produced growth factor HB-EGF limits autoimmune CNS pathology.
    Linnerbauer M; Lößlein L; Vandrey O; Peter A; Han Y; Tsaktanis T; Wogram E; Needhamsen M; Kular L; Nagel L; Zissler J; Andert M; Meszaros L; Hanspach J; Zuber F; Naumann UJ; Diebold M; Wheeler MA; Beyer T; Nirschl L; Cirac A; Laun FB; Günther C; Winkler J; Bäuerle T; Jagodic M; Hemmer B; Prinz M; Quintana FJ; Rothhammer V
    Nat Immunol; 2024 Mar; 25(3):432-447. PubMed ID: 38409259
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective epigenetic alterations in RNF43 in pancreatic exocrine cells from high-fat-diet-induced obese mice; implications for pancreatic cancer.
    Araki T; Miwa N
    BMC Res Notes; 2024 Apr; 17(1):106. PubMed ID: 38622664
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hematopoietic sphingosine 1-phosphate lyase deficiency decreases atherosclerotic lesion development in LDL-receptor deficient mice.
    Bot M; Van Veldhoven PP; de Jager SC; Johnson J; Nijstad N; Van Santbrink PJ; Westra MM; Van Der Hoeven G; Gijbels MJ; Müller-Tidow C; Varga G; Tietge UJ; Kuiper J; Van Berkel TJ; Nofer JR; Bot I; Biessen EA
    PLoS One; 2013; 8(5):e63360. PubMed ID: 23700419
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tumour-associated macrophages correlate with poor prognosis in myxoid liposarcoma and promote cell motility and invasion via the HB-EGF-EGFR-PI3K/Akt pathways.
    Nabeshima A; Matsumoto Y; Fukushi J; Iura K; Matsunobu T; Endo M; Fujiwara T; Iida K; Fujiwara Y; Hatano M; Yokoyama N; Fukushima S; Oda Y; Iwamoto Y
    Br J Cancer; 2015 Feb; 112(3):547-55. PubMed ID: 25562433
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Triple-negative breast cancer: investigating potential molecular therapeutic target.
    Papa A; Caruso D; Tomao S; Rossi L; Zaccarelli E; Tomao F
    Expert Opin Ther Targets; 2015 Jan; 19(1):55-75. PubMed ID: 25307277
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.