These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
210 related articles for article (PubMed ID: 23376957)
1. Controlled transition dipole alignment of energy donor and energy acceptor molecules in doped organic crystals, and the effect on intermolecular Förster energy transfer. Wang H; Yue B; Xie Z; Gao B; Xu Y; Liu L; Sun H; Ma Y Phys Chem Chem Phys; 2013 Mar; 15(10):3527-34. PubMed ID: 23376957 [TBL] [Abstract][Full Text] [Related]
2. Three-dimensional energy transport in highly luminescent host-guest crystals: a quantitative experimental and theoretical study. Poulsen L; Jazdzyk M; Communal JE; Sancho-García JC; Mura A; Bongiovanni G; Beljonne D; Cornil J; Hanack M; Egelhaaf HJ; Gierschner J J Am Chem Soc; 2007 Jul; 129(27):8585-93. PubMed ID: 17564450 [TBL] [Abstract][Full Text] [Related]
3. Anthracene-BODIPY cassettes: syntheses and energy transfer. Wan CW; Burghart A; Chen J; Bergström F; Johansson LB; Wolford MF; Kim TG; Topp MR; Hochstrasser RM; Burgess K Chemistry; 2003 Sep; 9(18):4430-41. PubMed ID: 14502630 [TBL] [Abstract][Full Text] [Related]
4. The orientation parameter for energy transfer in restricted geometries including block copolymer interfaces: a Monte Carlo study. Yang J; Winnik MA J Phys Chem B; 2005 Oct; 109(39):18408-17. PubMed ID: 16853370 [TBL] [Abstract][Full Text] [Related]
5. A revisitation of the Förster energy transfer near a metallic spherical nanoparticle: (1) Efficiency enhancement or reduction? (2) The control of the Förster radius of the unbounded medium. (3) The impact of the local density of states. Gonzaga-Galeana JA; Zurita-Sánchez JR J Chem Phys; 2013 Dec; 139(24):244302. PubMed ID: 24387365 [TBL] [Abstract][Full Text] [Related]
6. Distance and orientation dependence of excitation energy transfer: from molecular systems to metal nanoparticles. Saini S; Srinivas G; Bagchi B J Phys Chem B; 2009 Feb; 113(7):1817-32. PubMed ID: 19128043 [TBL] [Abstract][Full Text] [Related]
7. Excitation energy transfer in tris(8-hydroxyquinolinato)aluminum doped with a pentacene derivative. Palilis LC; Melinger JS; Wolak MA; Kafafi ZH J Phys Chem B; 2005 Mar; 109(12):5456-63. PubMed ID: 16851581 [TBL] [Abstract][Full Text] [Related]
8. Förster resonant energy transfer in orthogonally arranged chromophores. Langhals H; Esterbauer AJ; Walter A; Riedle E; Pugliesi I J Am Chem Soc; 2010 Dec; 132(47):16777-82. PubMed ID: 21053962 [TBL] [Abstract][Full Text] [Related]
9. Exciton migration by ultrafast Förster transfer in highly doped matrixes. Schlosser M; Lochbrunner S J Phys Chem B; 2006 Mar; 110(12):6001-9. PubMed ID: 16553409 [TBL] [Abstract][Full Text] [Related]
10. Structural and orientation effects on electronic energy transfer between silicon quantum dots with dopants and with silver adsorbates. Vinson N; Freitag H; Micha DA J Chem Phys; 2014 Jun; 140(24):244709. PubMed ID: 24985670 [TBL] [Abstract][Full Text] [Related]
11. Beyond Förster resonance energy transfer in biological and nanoscale systems. Beljonne D; Curutchet C; Scholes GD; Silbey RJ J Phys Chem B; 2009 May; 113(19):6583-99. PubMed ID: 19331333 [TBL] [Abstract][Full Text] [Related]
12. [Mechanism and fluorescence spectra of 5,6,11,12-tetraphenyl-tetracene doped 8-hydroxyquinoline system]. Li HJ; Peng JC; Qu S; Xia H; Xu XM; Luo XH Guang Pu Xue Yu Guang Pu Fen Xi; 2002 Oct; 22(5):718-20. PubMed ID: 12938410 [TBL] [Abstract][Full Text] [Related]
13. Experimental determination of the Förster distance for two commonly used bioluminescent resonance energy transfer pairs. Dacres H; Wang J; Dumancic MM; Trowell SC Anal Chem; 2010 Jan; 82(1):432-5. PubMed ID: 19957970 [TBL] [Abstract][Full Text] [Related]
14. Improving lanthanide-based resonance energy transfer detection by increasing donor-acceptor distances. Vogel KW; Vedvik KL J Biomol Screen; 2006 Jun; 11(4):439-43. PubMed ID: 16751339 [TBL] [Abstract][Full Text] [Related]
15. Oxazine dye-conjugated dna oligonucleotides: Förster resonance energy transfer in view of molecular dye-DNA interactions. Kupstat A; Ritschel T; Kumke MU Bioconjug Chem; 2011 Dec; 22(12):2546-57. PubMed ID: 22073970 [TBL] [Abstract][Full Text] [Related]
16. Control of emission by intermolecular fluorescence resonance energy transfer and intermolecular charge transfer. Sun M; Pullerits T; Kjellberg P; Beenken WJ; Han K J Phys Chem A; 2006 May; 110(19):6324-8. PubMed ID: 16686468 [TBL] [Abstract][Full Text] [Related]
17. Energy and electron transfer from fluorescent mesostructured organosilica framework to guest dyes. Mizoshita N; Yamanaka K; Hiroto S; Shinokubo H; Tani T; Inagaki S Langmuir; 2012 Feb; 28(8):3987-94. PubMed ID: 22251446 [TBL] [Abstract][Full Text] [Related]
18. Transfer of electronic excitation energy between randomly mixed dye molecules in the channels of zeolite L. Lutkouskaya K; Calzaferri G J Phys Chem B; 2006 Mar; 110(11):5633-8. PubMed ID: 16539507 [TBL] [Abstract][Full Text] [Related]
19. Singlet energy transfer in porphyrin-based donor-bridge-acceptor systems: interaction between bridge length and bridge energy. Pettersson K; Kyrychenko A; Rönnow E; Ljungdahl T; Mårtensson J; Albinsson B J Phys Chem A; 2006 Jan; 110(1):310-8. PubMed ID: 16392870 [TBL] [Abstract][Full Text] [Related]
20. Determination of DNA helical handedness by fluorescence resonance energy transfer. Jares-Erijman EA; Jovin TM J Mol Biol; 1996 Apr; 257(3):597-617. PubMed ID: 8648627 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]