These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 23376983)
1. Hierarchical nanostructured core-shell Sn@C nanoparticles embedded in graphene nanosheets: spectroscopic view and their application in lithium ion batteries. Wang D; Li X; Yang J; Wang J; Geng D; Li R; Cai M; Sham TK; Sun X Phys Chem Chem Phys; 2013 Mar; 15(10):3535-42. PubMed ID: 23376983 [TBL] [Abstract][Full Text] [Related]
2. Yolk-Shell Sn@C Eggette-like Nanostructure: Application in Lithium-Ion and Sodium-Ion Batteries. Li S; Wang Z; Liu J; Yang L; Guo Y; Cheng L; Lei M; Wang W ACS Appl Mater Interfaces; 2016 Aug; 8(30):19438-45. PubMed ID: 27420372 [TBL] [Abstract][Full Text] [Related]
3. Tin dioxide@carbon core-shell nanoarchitectures anchored on wrinkled graphene for ultrafast and stable lithium storage. Zhou X; Liu W; Yu X; Liu Y; Fang Y; Klankowski S; Yang Y; Brown JE; Li J ACS Appl Mater Interfaces; 2014 May; 6(10):7434-43. PubMed ID: 24784816 [TBL] [Abstract][Full Text] [Related]
4. Peroxide induced tin oxide coating of graphene oxide at room temperature and its application for lithium ion batteries. Sladkevich S; Gun J; Prikhodchenko PV; Gutkin V; Mikhaylov AA; Novotortsev VM; Zhu JX; Yang D; Hng HH; Tay YY; Tsakadze Z; Lev O Nanotechnology; 2012 Dec; 23(48):485601. PubMed ID: 23124434 [TBL] [Abstract][Full Text] [Related]
5. Hierarchical nanosheet-constructed yolk-shell TiO₂ porous microspheres for lithium batteries with high capacity, superior rate and long cycle capability. Jin J; Huang SZ; Li Y; Tian H; Wang HE; Yu Y; Chen LH; Hasan T; Su BL Nanoscale; 2015 Aug; 7(30):12979-89. PubMed ID: 26168989 [TBL] [Abstract][Full Text] [Related]
6. Tin nanoparticles encapsulated in porous multichannel carbon microtubes: preparation by single-nozzle electrospinning and application as anode material for high-performance Li-based batteries. Yu Y; Gu L; Zhu C; van Aken PA; Maier J J Am Chem Soc; 2009 Nov; 131(44):15984-5. PubMed ID: 19886691 [TBL] [Abstract][Full Text] [Related]
7. A hierarchical hybrid design for high performance tin based Li-ion battery anodes. Song X Nanotechnology; 2013 May; 24(20):205401. PubMed ID: 23598519 [TBL] [Abstract][Full Text] [Related]
8. Nanographene-constructed carbon nanofibers grown on graphene sheets by chemical vapor deposition: high-performance anode materials for lithium ion batteries. Fan ZJ; Yan J; Wei T; Ning GQ; Zhi LJ; Liu JC; Cao DX; Wang GL; Wei F ACS Nano; 2011 Apr; 5(4):2787-94. PubMed ID: 21425865 [TBL] [Abstract][Full Text] [Related]
9. Ultrafine tin nanocrystallites encapsulated in mesoporous carbon nanowires: scalable synthesis and excellent electrochemical properties for rechargeable lithium ion batteries. Qiu Y; Yan K; Yang S Chem Commun (Camb); 2010 Nov; 46(44):8359-61. PubMed ID: 20922234 [TBL] [Abstract][Full Text] [Related]
10. One-pot synthesis of tin-embedded carbon/silica nanocomposites for anode materials in lithium-ion batteries. Hwang J; Woo SH; Shim J; Jo C; Lee KT; Lee J ACS Nano; 2013 Feb; 7(2):1036-44. PubMed ID: 23316943 [TBL] [Abstract][Full Text] [Related]
11. Cyclodextrin functionalized graphene nanosheets with high supramolecular recognition capability: synthesis and host-guest inclusion for enhanced electrochemical performance. Guo Y; Guo S; Ren J; Zhai Y; Dong S; Wang E ACS Nano; 2010 Jul; 4(7):4001-10. PubMed ID: 20583782 [TBL] [Abstract][Full Text] [Related]
12. Novel hybrid carbon nanofiber/highly branched graphene nanosheet for anode materials in lithium-ion batteries. Kim H; Huang X; Guo X; Wen Z; Cui S; Chen J ACS Appl Mater Interfaces; 2014 Nov; 6(21):18590-6. PubMed ID: 25310206 [TBL] [Abstract][Full Text] [Related]
13. General formation of tin nanoparticles encapsulated in hollow carbon spheres for enhanced lithium storage capability. Hong YJ; Kang YC Small; 2015 May; 11(18):2157-63. PubMed ID: 25565252 [TBL] [Abstract][Full Text] [Related]
14. Sn@CNT nanostructures rooted in graphene with high and fast Li-storage capacities. Zou Y; Wang Y ACS Nano; 2011 Oct; 5(10):8108-14. PubMed ID: 21939228 [TBL] [Abstract][Full Text] [Related]
15. A hierarchical tin/carbon composite as an anode for lithium-ion batteries with a long cycle life. Huang X; Cui S; Chang J; Hallac PB; Fell CR; Luo Y; Metz B; Jiang J; Hurley PT; Chen J Angew Chem Int Ed Engl; 2015 Jan; 54(5):1490-3. PubMed ID: 25504807 [TBL] [Abstract][Full Text] [Related]
16. In situ deposition of hierarchical architecture assembly from Sn-filled CNTs for lithium-ion batteries. Hou X; Jiang H; Hu Y; Li Y; Huo J; Li C ACS Appl Mater Interfaces; 2013 Jul; 5(14):6672-7. PubMed ID: 23777621 [TBL] [Abstract][Full Text] [Related]
17. Two-dimensional carbon-coated graphene/metal oxide hybrids for enhanced lithium storage. Su Y; Li S; Wu D; Zhang F; Liang H; Gao P; Cheng C; Feng X ACS Nano; 2012 Sep; 6(9):8349-56. PubMed ID: 22931096 [TBL] [Abstract][Full Text] [Related]
18. Li ion battery materials with core-shell nanostructures. Su L; Jing Y; Zhou Z Nanoscale; 2011 Oct; 3(10):3967-83. PubMed ID: 21879116 [TBL] [Abstract][Full Text] [Related]
19. Scalable synthesis of TiO2/graphene nanostructured composite with high-rate performance for lithium ion batteries. Xin X; Zhou X; Wu J; Yao X; Liu Z ACS Nano; 2012 Dec; 6(12):11035-43. PubMed ID: 23185962 [TBL] [Abstract][Full Text] [Related]
20. In situ growth of hierarchical SnO(2) nanosheet arrays on 3D macroporous substrates as high-performance electrodes. Zhao X; Liu B; Hu C; Cao M Chemistry; 2014 Jan; 20(2):467-73. PubMed ID: 24356889 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]