These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 23377007)

  • 41. High-speed, high-resolution Fourier-domain optical coherence tomography system for retinal imaging in the 1060 nm wavelength region.
    Puvanathasan P; Forbes P; Ren Z; Malchow D; Boyd S; Bizheva K
    Opt Lett; 2008 Nov; 33(21):2479-81. PubMed ID: 18978893
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Visualization of phase retardation of deep posterior eye by polarization-sensitive swept-source optical coherence tomography with 1-microm probe.
    Yamanari M; Lim Y; Makita S; Yasuno Y
    Opt Express; 2009 Jul; 17(15):12385-96. PubMed ID: 19654640
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Polarization properties of single layers in the posterior eyes of mice and rats investigated using high resolution polarization sensitive optical coherence tomography.
    Fialová S; Augustin M; Glösmann M; Himmel T; Rauscher S; Gröger M; Pircher M; Hitzenberger CK; Baumann B
    Biomed Opt Express; 2016 Apr; 7(4):1479-95. PubMed ID: 27446670
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Volumetric retinal imaging with ultrahigh-resolution spectral-domain optical coherence tomography and adaptive optics using two broadband light sources.
    Cense B; Koperda E; Brown JM; Kocaoglu OP; Gao W; Jonnal RS; Miller DT
    Opt Express; 2009 Mar; 17(5):4095-111. PubMed ID: 19259249
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Coextensive synchronized SLO-OCT with adaptive optics for human retinal imaging.
    Azimipour M; Jonnal RS; Werner JS; Zawadzki RJ
    Opt Lett; 2019 Sep; 44(17):4219-4222. PubMed ID: 31465366
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Simultaneous dual wavelength eye-tracked ultrahigh resolution retinal and choroidal optical coherence tomography.
    Unterhuber A; Považay B; Müller A; Jensen OB; Duelk M; Le T; Petersen PM; Velez C; Esmaeelpour M; Andersen PE; Drexler W
    Opt Lett; 2013 Nov; 38(21):4312-5. PubMed ID: 24177081
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Analysis of optimum conditions of depolarization imaging by polarization-sensitive optical coherence tomography in the human retina.
    Sugita M; Pircher M; Zotter S; Baumann B; Saito K; Makihira T; Tomatsu N; Sato M; Hitzenberger CK
    J Biomed Opt; 2015 Jan; 20(1):016011. PubMed ID: 25585024
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Corneal birefringence compensation for polarization sensitive optical coherence tomography of the human retina.
    Pircher M; Götzinger E; Baumann B; Hitzenberger CK
    J Biomed Opt; 2007; 12(4):041210. PubMed ID: 17867799
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Efficient reduction of speckle noise in Optical Coherence Tomography.
    Szkulmowski M; Gorczynska I; Szlag D; Sylwestrzak M; Kowalczyk A; Wojtkowski M
    Opt Express; 2012 Jan; 20(2):1337-59. PubMed ID: 22274479
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Quantitative depolarization measurements for fiber-based polarization-sensitive optical frequency domain imaging of the retinal pigment epithelium.
    Lippok N; Braaf B; Villiger M; Oh WY; Vakoc BJ; Bouma BE
    J Biophotonics; 2019 Jan; 12(1):e201800156. PubMed ID: 30009506
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Automated retinal shadow compensation of optical coherence tomography images.
    Fabritius T; Makita S; Hong Y; Myllylä R; Yasuno Y
    J Biomed Opt; 2009; 14(1):010503. PubMed ID: 19256685
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Combined 60° Wide-Field Choroidal Thickness Maps and High-Definition En Face Vasculature Visualization Using Swept-Source Megahertz OCT at 1050 nm.
    Mohler KJ; Draxinger W; Klein T; Kolb JP; Wieser W; Haritoglou C; Kampik A; Fujimoto JG; Neubauer AS; Huber R; Wolf A
    Invest Ophthalmol Vis Sci; 2015 Oct; 56(11):6284-93. PubMed ID: 26431482
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Ocular tissue imaging using ultrahigh-resolution, full-field optical coherence tomography.
    Grieve K; Paques M; Dubois A; Sahel J; Boccara C; Le Gargasson JF
    Invest Ophthalmol Vis Sci; 2004 Nov; 45(11):4126-31. PubMed ID: 15505065
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Measuring retinal nerve fiber layer birefringence, retardation, and thickness using wide-field, high-speed polarization sensitive spectral domain OCT.
    Zotter S; Pircher M; Götzinger E; Torzicky T; Yoshida H; Hirose F; Holzer S; Kroisamer J; Vass C; Schmidt-Erfurth U; Hitzenberger CK
    Invest Ophthalmol Vis Sci; 2013 Jan; 54(1):72-84. PubMed ID: 23221076
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Swept source/Fourier domain polarization sensitive optical coherence tomography with a passive polarization delay unit.
    Baumann B; Choi W; Potsaid B; Huang D; Duker JS; Fujimoto JG
    Opt Express; 2012 Apr; 20(9):10229-41. PubMed ID: 22535114
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Image Analysis of Optical Coherence Tomography Angiography.
    Coscas G; Lupidi M; Coscas F
    Dev Ophthalmol; 2016; 56():30-6. PubMed ID: 27023365
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Choroidal thickness and volume mapping by a six radial scan protocol on spectral-domain optical coherence tomography.
    Shin JW; Shin YU; Lee BR
    Ophthalmology; 2012 May; 119(5):1017-23. PubMed ID: 22281089
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Spectral-domain optical coherence tomography with multiple B-scan averaging for enhanced imaging of retinal diseases.
    Sakamoto A; Hangai M; Yoshimura N
    Ophthalmology; 2008 Jun; 115(6):1071-1078.e7. PubMed ID: 18061270
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Adaptation of a support vector machine algorithm for segmentation and visualization of retinal structures in volumetric optical coherence tomography data sets.
    Zawadzki RJ; Fuller AR; Wiley DF; Hamann B; Choi SS; Werner JS
    J Biomed Opt; 2007; 12(4):041206. PubMed ID: 17867795
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Wide tuning range wavelength-swept laser with a single SOA at 1020 nm for ultrahigh resolution Fourier-domain optical coherence tomography.
    Lee SW; Song HW; Jung MY; Kim SH
    Opt Express; 2011 Oct; 19(22):21227-37. PubMed ID: 22108975
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.