These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 23377101)

  • 1. Low temperature water based electrolytes for MnO2/carbon supercapacitors.
    Roberts AJ; Danil de Namor AF; Slade RC
    Phys Chem Chem Phys; 2013 Mar; 15(10):3518-26. PubMed ID: 23377101
    [TBL] [Abstract][Full Text] [Related]  

  • 2. All-solid-state flexible supercapacitors based on papers coated with carbon nanotubes and ionic-liquid-based gel electrolytes.
    Kang YJ; Chung H; Han CH; Kim W
    Nanotechnology; 2012 Feb; 23(6):065401. PubMed ID: 22248712
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-performance supercapacitors based on vertically aligned carbon nanotubes and nonaqueous electrolytes.
    Kim B; Chung H; Kim W
    Nanotechnology; 2012 Apr; 23(15):155401. PubMed ID: 22437007
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MnO2 nanolayers on highly conductive TiO(0.54)N(0.46) nanotubes for supercapacitor electrodes with high power density and cyclic stability.
    Wang Z; Li Z; Feng J; Yan S; Luo W; Liu J; Yu T; Zou Z
    Phys Chem Chem Phys; 2014 May; 16(18):8521-8. PubMed ID: 24668150
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A pyrrolidinium nitrate protic ionic liquid-based electrolyte for very low-temperature electrical double-layer capacitors.
    Anouti M; Timperman L
    Phys Chem Chem Phys; 2013 May; 15(17):6539-48. PubMed ID: 23532057
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A reversible redox strategy for SWCNT-based supercapacitors using a high-performance electrolyte.
    Yu H; Wu J; Lin J; Fan L; Huang M; Lin Y; Li Y; Yu F; Qiu Z
    Chemphyschem; 2013 Feb; 14(2):394-9. PubMed ID: 23303585
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flexible pillared graphene-paper electrodes for high-performance electrochemical supercapacitors.
    Wang G; Sun X; Lu F; Sun H; Yu M; Jiang W; Liu C; Lian J
    Small; 2012 Feb; 8(3):452-9. PubMed ID: 22162371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural in situ study of the thermal behavior of manganese dioxide materials: toward selected electrode materials for supercapacitors.
    Ghodbane O; Pascal JL; Fraisse B; Favier F
    ACS Appl Mater Interfaces; 2010 Dec; 2(12):3493-505. PubMed ID: 21114252
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unveiling the Formation of Solid Electrolyte Interphase and its Temperature Dependence in "Water-in-Salt" Supercapacitors.
    Quan T; Härk E; Xu Y; Ahmet I; Höhn C; Mei S; Lu Y
    ACS Appl Mater Interfaces; 2021 Jan; 13(3):3979-3990. PubMed ID: 33427459
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hierarchical micro- and mesoporous carbide-derived carbon as a high-performance electrode material in supercapacitors.
    Rose M; Korenblit Y; Kockrick E; Borchardt L; Oschatz M; Kaskel S; Yushin G
    Small; 2011 Apr; 7(8):1108-17. PubMed ID: 21449047
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A green and high energy density asymmetric supercapacitor based on ultrathin MnO2 nanostructures and functional mesoporous carbon nanotube electrodes.
    Jiang H; Li C; Sun T; Ma J
    Nanoscale; 2012 Feb; 4(3):807-12. PubMed ID: 22159343
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graphene and carbon nanotube composite electrodes for supercapacitors with ultra-high energy density.
    Cheng Q; Tang J; Ma J; Zhang H; Shinya N; Qin LC
    Phys Chem Chem Phys; 2011 Oct; 13(39):17615-24. PubMed ID: 21887427
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sustainable Carbon/Carbon Supercapacitors Operating Down to -40 °C in Aqueous Electrolyte Made with Cholinium Salt.
    Abbas Q; Béguin F
    ChemSusChem; 2018 Mar; 11(5):975-984. PubMed ID: 29240966
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of temperature on the capacitance of carbon nanotube supercapacitors.
    Masarapu C; Zeng HF; Hung KH; Wei B
    ACS Nano; 2009 Aug; 3(8):2199-206. PubMed ID: 19583250
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microstructural effects on charge-storage properties in MnO2-based electrochemical supercapacitors.
    Ghodbane O; Pascal JL; Favier F
    ACS Appl Mater Interfaces; 2009 May; 1(5):1130-9. PubMed ID: 20355901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flexible asymmetric supercapacitors with high energy and high power density in aqueous electrolytes.
    Cheng Y; Zhang H; Lu S; Varanasi CV; Liu J
    Nanoscale; 2013 Feb; 5(3):1067-73. PubMed ID: 23254316
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interconnected V2O5 nanoporous network for high-performance supercapacitors.
    Saravanakumar B; Purushothaman KK; Muralidharan G
    ACS Appl Mater Interfaces; 2012 Sep; 4(9):4484-90. PubMed ID: 22913341
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon coated nano-LiTi2(PO4)3 electrodes for non-aqueous hybrid supercapacitors.
    Aravindan V; Chuiling W; Reddy MV; Rao GV; Chowdari BV; Madhavi S
    Phys Chem Chem Phys; 2012 Apr; 14(16):5808-14. PubMed ID: 22434062
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-performance supercapacitor electrode materials prepared from various pollens.
    Zhang L; Zhang F; Yang X; Leng K; Huang Y; Chen Y
    Small; 2013 Apr; 9(8):1342-7. PubMed ID: 23494916
    [TBL] [Abstract][Full Text] [Related]  

  • 20. All-solid-state flexible supercapacitors fabricated with bacterial nanocellulose papers, carbon nanotubes, and triblock-copolymer ion gels.
    Kang YJ; Chun SJ; Lee SS; Kim BY; Kim JH; Chung H; Lee SY; Kim W
    ACS Nano; 2012 Jul; 6(7):6400-6. PubMed ID: 22717174
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.