These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 23377101)

  • 21. A unique choline nitrate-based organo-aqueous electrolyte enables carbon/carbon supercapacitor operation in a wide temperature window (-40°C to 60°C).
    Supiyeva Z; Mansurov Z; Azat S; Abbas Q
    Front Chem; 2024; 12():1377144. PubMed ID: 38666046
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Facile coating of manganese oxide on tin oxide nanowires with high-performance capacitive behavior.
    Yan J; Khoo E; Sumboja A; Lee PS
    ACS Nano; 2010 Jul; 4(7):4247-55. PubMed ID: 20593844
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Supramolecular-induced 2.40 V 130 °C working-temperature-range supercapacitor aqueous electrolyte of lithium bis(trifluoromethanesulfonyl) imide in dimethyl sulfoxide-water.
    Tang C; Li M; Du J; Wang Y; Zhang Y; Wang G; Shi X; Li Y; Liu J; Lian C; Li L
    J Colloid Interface Sci; 2022 Feb; 608(Pt 2):1162-1172. PubMed ID: 34735852
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Supercapacitors based on self-assembled graphene organogel.
    Sun Y; Wu Q; Shi G
    Phys Chem Chem Phys; 2011 Oct; 13(38):17249-54. PubMed ID: 21879072
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cell voltage versus electrode potential range in aqueous supercapacitors.
    Dai Z; Peng C; Chae JH; Ng KC; Chen GZ
    Sci Rep; 2015 Apr; 5():9854. PubMed ID: 25897670
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A universal model for nanoporous carbon supercapacitors applicable to diverse pore regimes, carbon materials, and electrolytes.
    Huang J; Sumpter BG; Meunier V
    Chemistry; 2008; 14(22):6614-26. PubMed ID: 18576455
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Carbon-based materials as supercapacitor electrodes.
    Zhang LL; Zhao XS
    Chem Soc Rev; 2009 Sep; 38(9):2520-31. PubMed ID: 19690733
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors.
    Chen LF; Zhang XD; Liang HW; Kong M; Guan QF; Chen P; Wu ZY; Yu SH
    ACS Nano; 2012 Aug; 6(8):7092-102. PubMed ID: 22769051
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hydrogenated ZnO core-shell nanocables for flexible supercapacitors and self-powered systems.
    Yang P; Xiao X; Li Y; Ding Y; Qiang P; Tan X; Mai W; Lin Z; Wu W; Li T; Jin H; Liu P; Zhou J; Wong CP; Wang ZL
    ACS Nano; 2013 Mar; 7(3):2617-26. PubMed ID: 23368853
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cutting and unzipping multiwalled carbon nanotubes into curved graphene nanosheets and their enhanced supercapacitor performance.
    Wang H; Wang Y; Hu Z; Wang X
    ACS Appl Mater Interfaces; 2012 Dec; 4(12):6827-34. PubMed ID: 23148646
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hydrous RuO(2)-Carbon Nanofiber electrodes with high mass and electrode-specific capacitance for efficient energy storage.
    Vellacheri R; Pillai VK; Kurungot S
    Nanoscale; 2012 Feb; 4(3):890-6. PubMed ID: 22159715
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High-performance asymmetric supercapacitor based on graphene hydrogel and nanostructured MnO2.
    Gao H; Xiao F; Ching CB; Duan H
    ACS Appl Mater Interfaces; 2012 May; 4(5):2801-10. PubMed ID: 22545683
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Generation of B-doped graphene nanoplatelets using a solution process and their supercapacitor applications.
    Han J; Zhang LL; Lee S; Oh J; Lee KS; Potts JR; Ji J; Zhao X; Ruoff RS; Park S
    ACS Nano; 2013 Jan; 7(1):19-26. PubMed ID: 23244292
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Exploring aligned-carbon-nanotubes@polyaniline arrays on household Al as supercapacitors.
    Huang F; Lou F; Chen D
    ChemSusChem; 2012 May; 5(5):888-95. PubMed ID: 22411903
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Aqueous-Eutectic-in-Salt Electrolytes for High-Energy-Density Supercapacitors with an Operational Temperature Window of 100 °C, from -35 to +65 °C.
    Lu X; Jiménez-Riobóo RJ; Leech D; Gutiérrez MC; Ferrer ML; Del Monte F
    ACS Appl Mater Interfaces; 2020 Jul; 12(26):29181-29193. PubMed ID: 32484323
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Formulation of ionic-liquid electrolyte to expand the voltage window of supercapacitors.
    Van Aken KL; Beidaghi M; Gogotsi Y
    Angew Chem Int Ed Engl; 2015 Apr; 54(16):4806-9. PubMed ID: 25788418
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dioxythiophene-based polymer electrodes for supercapacitor modules.
    Liu DY; Reynolds JR
    ACS Appl Mater Interfaces; 2010 Dec; 2(12):3586-93. PubMed ID: 21090685
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interactive effects of pore size control and carbonization temperatures on supercapacitive behaviors of porous carbon/carbon nanotube composites.
    Kim JI; Rhee KY; Park SJ
    J Colloid Interface Sci; 2012 Jul; 377(1):307-12. PubMed ID: 22494688
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Application of octanohydroxamic acid for liquid-liquid extraction of manganese oxides and fabrication of supercapacitor electrodes.
    Milne J; Zhitomirsky I
    J Colloid Interface Sci; 2018 Apr; 515():50-57. PubMed ID: 29331780
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Densities and apparent molar volumes of atmospherically important electrolyte solutions. 1. The solutes H2SO4, HNO3, HCl, Na2SO4, NaNO3, NaCl, (NH4)2SO4, NH4NO3, and NH4Cl from 0 to 50 °C, including extrapolations to very low temperature and to the pure liquid state, and NaHSO4, NaOH, and NH3 at 25 °C.
    Clegg SL; Wexler AS
    J Phys Chem A; 2011 Apr; 115(15):3393-460. PubMed ID: 21438504
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.