These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 23377101)

  • 41. High-Voltage and Low-Temperature Aqueous Supercapacitor Enabled by "Water-in-Imidazolium Chloride" Electrolytes.
    Tatlisu A; Huang Z; Chen R
    ChemSusChem; 2018 Nov; 11(22):3899-3904. PubMed ID: 30300975
    [TBL] [Abstract][Full Text] [Related]  

  • 42. In situ electrochemical polymerization of a nanorod-PANI-Graphene composite in a reverse micelle electrolyte and its application in a supercapacitor.
    Hu L; Tu J; Jiao S; Hou J; Zhu H; Fray DJ
    Phys Chem Chem Phys; 2012 Dec; 14(45):15652-6. PubMed ID: 23076399
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Flexible all-solid-state asymmetric supercapacitors based on free-standing carbon nanotube/graphene and Mn3O4 nanoparticle/graphene paper electrodes.
    Gao H; Xiao F; Ching CB; Duan H
    ACS Appl Mater Interfaces; 2012 Dec; 4(12):7020-6. PubMed ID: 23167563
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Performance of SLS/MWCNTs/PANI capacitor electrodes in a physiological electrolyte and in serum.
    Ammam M; Fransaer J
    Chem Commun (Camb); 2012 Feb; 48(14):2036-8. PubMed ID: 22237451
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Non-toxic printed supercapacitors operating in sub-zero conditions.
    Railanmaa A; Lehtimäki S; Keskinen J; Lupo D
    Sci Rep; 2019 Oct; 9(1):14059. PubMed ID: 31575914
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Freestanding three-dimensional graphene/MnO2 composite networks as ultralight and flexible supercapacitor electrodes.
    He Y; Chen W; Li X; Zhang Z; Fu J; Zhao C; Xie E
    ACS Nano; 2013 Jan; 7(1):174-82. PubMed ID: 23249211
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Relation between the ion size and pore size for an electric double-layer capacitor.
    Largeot C; Portet C; Chmiola J; Taberna PL; Gogotsi Y; Simon P
    J Am Chem Soc; 2008 Mar; 130(9):2730-1. PubMed ID: 18257568
    [TBL] [Abstract][Full Text] [Related]  

  • 48. High-performance supercapacitors based on poly(ionic liquid)-modified graphene electrodes.
    Kim TY; Lee HW; Stoller M; Dreyer DR; Bielawski CW; Ruoff RS; Suh KS
    ACS Nano; 2011 Jan; 5(1):436-42. PubMed ID: 21142183
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Structural engineering for high energy and voltage output supercapacitors.
    Xu J; Wu H; Xu C; Huang H; Lu L; Ding G; Wang H; Liu D; Shen G; Li D; Chen X
    Chemistry; 2013 May; 19(20):6451-8. PubMed ID: 23520077
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Activated carbons from KOH-activation of argan (Argania spinosa) seed shells as supercapacitor electrodes.
    Elmouwahidi A; Zapata-Benabithe Z; Carrasco-Marín F; Moreno-Castilla C
    Bioresour Technol; 2012 May; 111():185-90. PubMed ID: 22370231
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Polyaniline nanowire array encapsulated in titania nanotubes as a superior electrode for supercapacitors.
    Xie K; Li J; Lai Y; Zhang Z; Liu Y; Zhang G; Huang H
    Nanoscale; 2011 May; 3(5):2202-7. PubMed ID: 21455534
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Carbon-based supercapacitors produced by activation of graphene.
    Zhu Y; Murali S; Stoller MD; Ganesh KJ; Cai W; Ferreira PJ; Pirkle A; Wallace RM; Cychosz KA; Thommes M; Su D; Stach EA; Ruoff RS
    Science; 2011 Jun; 332(6037):1537-41. PubMed ID: 21566159
    [TBL] [Abstract][Full Text] [Related]  

  • 53. D.C. voltammetry of ionic liquid-based capacitors: effects of Faradaic reactions, electrolyte resistance and voltage scan speed investigated using an electrode of carbon nanotubes in EMIM-EtSO4.
    Zheng JP; Pettit CM; Goonetilleke PC; Zenger GM; Roy D
    Talanta; 2009 May; 78(3):1056-62. PubMed ID: 19269472
    [TBL] [Abstract][Full Text] [Related]  

  • 54. On the configuration of supercapacitors for maximizing electrochemical performance.
    Zhang J; Zhao XS
    ChemSusChem; 2012 May; 5(5):818-41. PubMed ID: 22550045
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Electrochemical behavior of single-walled carbon nanotube supercapacitors under compressive stress.
    Li X; Rong J; Wei B
    ACS Nano; 2010 Oct; 4(10):6039-49. PubMed ID: 20828214
    [TBL] [Abstract][Full Text] [Related]  

  • 56. MnO2/TiN heterogeneous nanostructure design for electrochemical energy storage.
    Sherrill SA; Duay J; Gui Z; Banerjee P; Rubloff GW; Lee SB
    Phys Chem Chem Phys; 2011 Sep; 13(33):15221-6. PubMed ID: 21776451
    [TBL] [Abstract][Full Text] [Related]  

  • 57. High electrochemical performance based on ultrathin porous CuO nanobelts grown on Cu substrate as integrated electrode.
    Zhang X; Yu L; Wang L; Ji R; Wang G; Geng B
    Phys Chem Chem Phys; 2013 Jan; 15(2):521-5. PubMed ID: 23171962
    [TBL] [Abstract][Full Text] [Related]  

  • 58. High-rate asymmetrical supercapacitors based on cobalt-doped birnessite nanotubes and Mn-FeOOH nanotubes.
    Shen M; Zhu SJ; Guo Z; Fu X; Huo W; Jing C; Liu X; Zhang YX
    Chem Commun (Camb); 2020 Mar; 56(22):3257-3260. PubMed ID: 32104838
    [TBL] [Abstract][Full Text] [Related]  

  • 59. An ionic liquid incorporated in a quasi-solid-state electrolyte for high-temperature supercapacitor applications.
    Lee JH; Chae JS; Jeong JH; Ahn HJ; Roh KC
    Chem Commun (Camb); 2019 Dec; 55(100):15081-15084. PubMed ID: 31781709
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Aqueous-based chemical route toward ambient preparation of multicomponent core-shell nanotubes.
    Tan HT; Rui X; Yu H; Liu W; Xu C; Xu Z; Hng HH; Yan Q
    ACS Nano; 2014 Apr; 8(4):4004-14. PubMed ID: 24645828
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.