These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 23377189)

  • 1. A silicon carbide wireless temperature sensing system for high temperature applications.
    Yang J
    Sensors (Basel); 2013 Feb; 13(2):1884-901. PubMed ID: 23377189
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A harsh environment wireless pressure sensing solution utilizing high temperature electronics.
    Yang J
    Sensors (Basel); 2013 Feb; 13(3):2719-34. PubMed ID: 23447006
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature and Pressure Wireless Ceramic Sensor (Distance = 0.5 Meter) for Extreme Environment Applications.
    Daniel J; Nguyen S; Chowdhury MAR; Xu S; Xu C
    Sensors (Basel); 2021 Oct; 21(19):. PubMed ID: 34640968
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High temperature gas sensing performances of silicon carbide nanosheets with an n-p conductivity transition.
    Sun L; Han C; Wu N; Wang B; Wang Y
    RSC Adv; 2018 Apr; 8(25):13697-13707. PubMed ID: 35539358
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High temperature silicon-carbide-based flexible electronics for monitoring hazardous environments.
    Phan HP; Dinh T; Nguyen TK; Qamar A; Nguyen T; Dau VT; Han J; Dao DV; Nguyen NT
    J Hazard Mater; 2020 Jul; 394():122486. PubMed ID: 32234659
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Passive Wireless Temperature Sensor for Harsh Environment Applications.
    Wang Y; Jia Y; Chen Q; Wang Y
    Sensors (Basel); 2008 Dec; 8(12):7982-7995. PubMed ID: 27873971
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-Temperature Gas Sensor Based on Novel Pt Single Atoms@SnO
    Sun L; Wang B; Wang Y
    ACS Appl Mater Interfaces; 2020 May; 12(19):21808-21817. PubMed ID: 32292025
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and Research of Wireless Passive High-Temperature Sensor Based on SIW Resonance.
    Xu F; Su S; Zhang L; Ren T
    Micromachines (Basel); 2022 Jun; 13(7):. PubMed ID: 35888851
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Status and Prospects of Cubic Silicon Carbide Power Electronics Device Technology.
    Li F; Roccaforte F; Greco G; Fiorenza P; La Via F; Pérez-Tomas A; Evans JE; Fisher CA; Monaghan FA; Mawby PA; Jennings M
    Materials (Basel); 2021 Oct; 14(19):. PubMed ID: 34640228
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Silicon Carbide Converters and MEMS Devices for High-temperature Power Electronics: A Critical Review.
    Guo X; Xun Q; Li Z; Du S
    Micromachines (Basel); 2019 Jun; 10(6):. PubMed ID: 31248121
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 400 °C Sensor Based on Ni/4H-SiC Schottky Diode for Reliable Temperature Monitoring in Industrial Environments.
    Draghici F; Brezeanu G; Pristavu G; Pascu R; Badila M; Pribeanu A; Ceuca E
    Sensors (Basel); 2019 May; 19(10):. PubMed ID: 31137664
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wireless Passive Sensor Technology through Electrically Conductive Media over an Acoustic Channel.
    Schaechtle T; Aftab T; Reindl LM; Rupitsch SJ
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850641
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Review of NDT/Structural Health Monitoring Techniques for Hot Gas Components in Gas Turbines.
    Mevissen F; Meo M
    Sensors (Basel); 2019 Feb; 19(3):. PubMed ID: 30744135
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Smart Archive Box for Museum Artifact Monitoring Using Battery-Less Temperature and Humidity Sensing.
    Gawade DR; Ziemann S; Kumar S; Iacopino D; Belcastro M; Alfieri D; Schuhmann K; Anders M; Pigeon M; Barton J; O'Flynn B; Buckley JL
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300641
    [TBL] [Abstract][Full Text] [Related]  

  • 15. LoRaWAN Battery-Free Wireless Sensors Network Designed for Structural Health Monitoring in the Construction Domain.
    Loubet G; Takacs A; Gardner E; De Luca A; Udrea F; Dragomirescu D
    Sensors (Basel); 2019 Mar; 19(7):. PubMed ID: 30925754
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantum systems in silicon carbide for sensing applications.
    Castelletto S; Lew CT; Lin WX; Xu JS
    Rep Prog Phys; 2023 Dec; 87(1):. PubMed ID: 38029424
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Silicon-carbide-based extreme environment temperature sensor using wavelength-tuned signal processing.
    Riza NA; Sheikh M
    Opt Lett; 2008 May; 33(10):1129-31. PubMed ID: 18483535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization, modeling and design parameters identification of silicon carbide junction field effect transistor for temperature sensor applications.
    Ben Salah T; Khachroumi S; Morel H
    Sensors (Basel); 2010; 10(1):388-99. PubMed ID: 22315547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of All-SiC Fiber-Optic Pressure Sensors for High-Temperature Applications.
    Jiang Y; Li J; Zhou Z; Jiang X; Zhang D
    Sensors (Basel); 2016 Oct; 16(10):. PubMed ID: 27763494
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct measurement high resolution wide range extreme temperature optical sensor using an all-silicon carbide probe.
    Sheikh M; Riza NA
    Opt Lett; 2009 May; 34(9):1402-4. PubMed ID: 19412286
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.