These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 23377292)

  • 1. Nucleation and growth of magnetite from solution.
    Baumgartner J; Dey A; Bomans PH; Le Coadou C; Fratzl P; Sommerdijk NA; Faivre D
    Nat Mater; 2013 Apr; 12(4):310-4. PubMed ID: 23377292
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Competing Fe (II)-induced mineralization pathways of ferrihydrite.
    Hansel CM; Benner SG; Fendorf S
    Environ Sci Technol; 2005 Sep; 39(18):7147-53. PubMed ID: 16201641
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nucleation of crystals from solution: classical and two-step models.
    Erdemir D; Lee AY; Myerson AS
    Acc Chem Res; 2009 May; 42(5):621-9. PubMed ID: 19402623
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioinspired magnetite formation from a disordered ferrihydrite-derived precursor.
    Dey A; Lenders JJ; Sommerdijk NA
    Faraday Discuss; 2015; 179():215-25. PubMed ID: 25865290
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Localized iron accumulation precedes nucleation and growth of magnetite crystals in magnetotactic bacteria.
    Werckmann J; Cypriano J; Lefèvre CT; Dembelé K; Ersen O; Bazylinski DA; Lins U; Farina M
    Sci Rep; 2017 Aug; 7(1):8291. PubMed ID: 28811607
    [TBL] [Abstract][Full Text] [Related]  

  • 6. From bacteria to mollusks: the principles underlying the biomineralization of iron oxide materials.
    Faivre D; Godec TU
    Angew Chem Int Ed Engl; 2015 Apr; 54(16):4728-47. PubMed ID: 25851816
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pre-nucleation clusters as solute precursors in crystallisation.
    Gebauer D; Kellermeier M; Gale JD; Bergström L; Cölfen H
    Chem Soc Rev; 2014 Apr; 43(7):2348-71. PubMed ID: 24457316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ TEM imaging of CaCO₃ nucleation reveals coexistence of direct and indirect pathways.
    Nielsen MH; Aloni S; De Yoreo JJ
    Science; 2014 Sep; 345(6201):1158-62. PubMed ID: 25190792
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonclassical nucleation pathways in protein crystallization.
    Zhang F
    J Phys Condens Matter; 2017 Nov; 29(44):443002. PubMed ID: 28984274
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal of hexavalent chromium [Cr(VI)] from aqueous solutions by the diatomite-supported/unsupported magnetite nanoparticles.
    Yuan P; Liu D; Fan M; Yang D; Zhu R; Ge F; Zhu J; He H
    J Hazard Mater; 2010 Jan; 173(1-3):614-21. PubMed ID: 19748178
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alignment of Amorphous Iron Oxide Clusters: A Non-Classical Mechanism for Magnetite Formation.
    Sun S; Gebauer D; Cölfen H
    Angew Chem Int Ed Engl; 2017 Mar; 56(14):4042-4046. PubMed ID: 28252244
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced and stabilized arsenic retention in microcosms through the microbial oxidation of ferrous iron by nitrate.
    Sun J; Chillrud SN; Mailloux BJ; Stute M; Singh R; Dong H; Lepre CJ; Bostick BC
    Chemosphere; 2016 Feb; 144():1106-15. PubMed ID: 26454120
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ordering dynamics of blue phases entails kinetic stabilization of amorphous networks.
    Henrich O; Stratford K; Marenduzzo D; Cates ME
    Proc Natl Acad Sci U S A; 2010 Jul; 107(30):13212-5. PubMed ID: 20624988
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnetite as a precursor for green rust through the hydrogenotrophic activity of the iron-reducing bacteria Shewanella putrefaciens.
    Etique M; Jorand FP; Ruby C
    Geobiology; 2016 May; 14(3):237-54. PubMed ID: 26715461
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Core size determination and structural characterization of intravenous iron complexes by cryogenic transmission electron microscopy.
    Wu Y; Petrochenko P; Chen L; Wong SY; Absar M; Choi S; Zheng J
    Int J Pharm; 2016 May; 505(1-2):167-74. PubMed ID: 27001529
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Superparamagnetic iron oxide nanoparticles with variable size and an iron oxidation state as prospective imaging agents.
    Kucheryavy P; He J; John VT; Maharjan P; Spinu L; Goloverda GZ; Kolesnichenko VL
    Langmuir; 2013 Jan; 29(2):710-6. PubMed ID: 23249219
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Degeneration of biogenic superparamagnetic magnetite.
    Li YL; Pfiffner SM; Dyar MD; Vali H; Konhauser K; Cole DR; Rondinone AJ; Phelps TJ
    Geobiology; 2009 Jan; 7(1):25-34. PubMed ID: 19200144
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-Confined Nucleation of Iron Oxide Nanoparticles in a Nanostructured Amorphous Precursor.
    Baumgartner J; Ramamoorthy RK; Freitas AP; Neouze MA; Bennet M; Faivre D; Carriere D
    Nano Lett; 2020 Jul; 20(7):5001-5007. PubMed ID: 32551668
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nucleation of iron oxide nanoparticles mediated by Mms6 protein in situ.
    Kashyap S; Woehl TJ; Liu X; Mallapragada SK; Prozorov T
    ACS Nano; 2014 Sep; 8(9):9097-106. PubMed ID: 25162493
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single crystalline superstructured stable single domain magnetite nanoparticles.
    Reichel V; Kovács A; Kumari M; Bereczk-Tompa É; Schneck E; Diehle P; Pósfai M; Hirt AM; Duchamp M; Dunin-Borkowski RE; Faivre D
    Sci Rep; 2017 Mar; 7():45484. PubMed ID: 28358051
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.