BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

644 related articles for article (PubMed ID: 23377445)

  • 41. Altered motor cortex excitability in tinnitus patients: a hint at crossmodal plasticity.
    Langguth B; Eichhammer P; Zowe M; Kleinjung T; Jacob P; Binder H; Sand P; Hajak G
    Neurosci Lett; 2005 Jun; 380(3):326-9. PubMed ID: 15862911
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Transcallosal sensorimotor integration: effects of sensory input on cortical projections to the contralateral hand.
    Swayne O; Rothwell J; Rosenkranz K
    Clin Neurophysiol; 2006 Apr; 117(4):855-63. PubMed ID: 16448846
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Increase in flexor but not extensor corticospinal motor outputs following ischemic nerve block.
    Vallence AM; Hammond GR; Reilly KT
    J Neurophysiol; 2012 Jun; 107(12):3417-27. PubMed ID: 22457455
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Excitability changes in human corticospinal projections to muscles moving hand and fingers while viewing a reaching and grasping action.
    Montagna M; Cerri G; Borroni P; Baldissera F
    Eur J Neurosci; 2005 Sep; 22(6):1513-20. PubMed ID: 16190904
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Factors influencing cortical silent period: optimized stimulus location, intensity and muscle contraction.
    Säisänen L; Pirinen E; Teitti S; Könönen M; Julkunen P; Määttä S; Karhu J
    J Neurosci Methods; 2008 Mar; 169(1):231-8. PubMed ID: 18243329
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Associative plasticity in human motor cortex during voluntary muscle contraction.
    Kujirai K; Kujirai T; Sinkjaer T; Rothwell JC
    J Neurophysiol; 2006 Sep; 96(3):1337-46. PubMed ID: 16723411
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Assessing TMS-induced D and I waves with spinal H-reflexes.
    Niemann N; Wiegel P; Kurz A; Rothwell JC; Leukel C
    J Neurophysiol; 2018 Mar; 119(3):933-943. PubMed ID: 29142099
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Temporal facilitation prior to voluntary muscle relaxation.
    Sugawara K; Tanabe S; Higashi T; Tsurumi T; Kasai T
    Int J Neurosci; 2009; 119(3):442-52. PubMed ID: 19116847
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Further evidence for excitability changes in human primary motor cortex during ipsilateral voluntary contractions.
    Liang N; Murakami T; Funase K; Narita T; Kasai T
    Neurosci Lett; 2008 Mar; 433(2):135-40. PubMed ID: 18261851
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Impaired crossed facilitation of the corticospinal pathway after cervical spinal cord injury.
    Bunday KL; Perez MA
    J Neurophysiol; 2012 May; 107(10):2901-11. PubMed ID: 22357796
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Electromyography detects mechanically-induced suprasegmental spinal motor tract injury: review of decompression at spinal cord level.
    Skinner SA; Transfeldt EE; Mehbod AA; Mullan JC; Perra JH
    Clin Neurophysiol; 2009 Apr; 120(4):754-64. PubMed ID: 19278900
    [TBL] [Abstract][Full Text] [Related]  

  • 52. On the potential role of the corticospinal tract in the control and progressive adaptation of the soleus h-reflex during backward walking.
    Ung RV; Imbeault MA; Ethier C; Brizzi L; Capaday C
    J Neurophysiol; 2005 Aug; 94(2):1133-42. PubMed ID: 15829598
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Reduced postactivation depression of soleus H reflex and root evoked potential after transcranial magnetic stimulation.
    Andrews JC; Stein RB; Roy FD
    J Neurophysiol; 2015 Jul; 114(1):485-92. PubMed ID: 25995355
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Peripheral electrical stimulation triggered by self-paced detection of motor intention enhances motor evoked potentials.
    Niazi IK; Mrachacz-Kersting N; Jiang N; Dremstrup K; Farina D
    IEEE Trans Neural Syst Rehabil Eng; 2012 Jul; 20(4):595-604. PubMed ID: 22547461
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Organization of ipsilateral excitatory and inhibitory pathways in the human motor cortex.
    Chen R; Yung D; Li JY
    J Neurophysiol; 2003 Mar; 89(3):1256-64. PubMed ID: 12611955
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Central fatigue assessed by transcranial magnetic stimulation in ultratrail running.
    Temesi J; Rupp T; Martin V; Arnal PJ; Féasson L; Verges S; Millet GY
    Med Sci Sports Exerc; 2014 Jun; 46(6):1166-75. PubMed ID: 24195865
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Changes in cortically related intermuscular coherence accompanying improvements in locomotor skills in incomplete spinal cord injury.
    Norton JA; Gorassini MA
    J Neurophysiol; 2006 Apr; 95(4):2580-9. PubMed ID: 16407422
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Operant conditioning of the tibialis anterior motor evoked potential in people with and without chronic incomplete spinal cord injury.
    Thompson AK; Cote RH; Sniffen JM; Brangaccio JA
    J Neurophysiol; 2018 Dec; 120(6):2745-2760. PubMed ID: 30207863
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Microcircuit mechanisms involved in paired associative stimulation-induced depression of corticospinal excitability.
    Weise D; Mann J; Ridding M; Eskandar K; Huss M; Rumpf JJ; Di Lazzaro V; Mazzone P; Ranieri F; Classen J
    J Physiol; 2013 Oct; 591(19):4903-20. PubMed ID: 23858008
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Corticospinal control of wrist muscles during expectation of a motor perturbation: a transcranial magnetic stimulation study.
    Meziane HB; Spieser L; Pailhous J; Bonnard M
    Behav Brain Res; 2009 Mar; 198(2):459-65. PubMed ID: 19073218
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 33.