These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
245 related articles for article (PubMed ID: 23377627)
41. Oscillating epidemics in a dynamic network model: stochastic and mean-field analysis. Szabó-Solticzky A; Berthouze L; Kiss IZ; Simon PL J Math Biol; 2016 Apr; 72(5):1153-76. PubMed ID: 26063525 [TBL] [Abstract][Full Text] [Related]
42. Simulation applications to support teaching and research in epidemiological dynamics. Getz WM; Salter R; Vissat LL BMC Med Educ; 2022 Aug; 22(1):632. PubMed ID: 35987608 [TBL] [Abstract][Full Text] [Related]
43. Pairwise and edge-based models of epidemic dynamics on correlated weighted networks. Rattana P; Miller JC; Kiss IZ Math Model Nat Phenom; 2014 Apr; 9(2):58-81. PubMed ID: 25580064 [TBL] [Abstract][Full Text] [Related]
44. Solving the Dynamic Correlation Problem of the Susceptible-Infected-Susceptible Model on Networks. Cai CR; Wu ZX; Chen MZ; Holme P; Guan JY Phys Rev Lett; 2016 Jun; 116(25):258301. PubMed ID: 27391759 [TBL] [Abstract][Full Text] [Related]
45. Dynamics of Multi-stage Infections on Networks. Sherborne N; Blyuss KB; Kiss IZ Bull Math Biol; 2015 Oct; 77(10):1909-33. PubMed ID: 26403422 [TBL] [Abstract][Full Text] [Related]
46. An SIR pairwise epidemic model with infection age and demography. Jing W; Jin Z; Zhang J J Biol Dyn; 2018 Dec; 12(1):486-508. PubMed ID: 29855227 [TBL] [Abstract][Full Text] [Related]
47. Comment on "Nodal infection in Markovian susceptible-infected-susceptible and susceptible-infected-removed epidemics on networks are non-negatively correlated". Rodríguez PM; Roldán-Correa A; Valencia LA Phys Rev E; 2018 Aug; 98(2-2):026301. PubMed ID: 30253510 [TBL] [Abstract][Full Text] [Related]
48. The large graph limit of a stochastic epidemic model on a dynamic multilayer network. Jacobsen KA; Burch MG; Tien JH; Rempała GA J Biol Dyn; 2018 Dec; 12(1):746-788. PubMed ID: 30175687 [TBL] [Abstract][Full Text] [Related]
49. Who is the infector? Epidemic models with symptomatic and asymptomatic cases. Leung KY; Trapman P; Britton T Math Biosci; 2018 Jul; 301():190-198. PubMed ID: 29654792 [TBL] [Abstract][Full Text] [Related]
50. On the time to reach a critical number of infections in epidemic models with infective and susceptible immigrants. Almaraz E; Gómez-Corral A; Rodríguez-Bernal MT Biosystems; 2016 Jun; 144():68-77. PubMed ID: 27068519 [TBL] [Abstract][Full Text] [Related]
51. Networks, epidemics and vaccination through contact tracing. Shaban N; Andersson M; Svensson A; Britton T Math Biosci; 2008 Nov; 216(1):1-8. PubMed ID: 18638493 [TBL] [Abstract][Full Text] [Related]
52. Susceptible-infected-recovered epidemics in random networks with population awareness. Wu Q; Chen S Chaos; 2017 Oct; 27(10):103107. PubMed ID: 29092430 [TBL] [Abstract][Full Text] [Related]
53. Discrete-time moment closure models for epidemic spreading in populations of interacting individuals. Frasca M; Sharkey KJ J Theor Biol; 2016 Jun; 399():13-21. PubMed ID: 27038669 [TBL] [Abstract][Full Text] [Related]
54. Effects of distribution of infection rate on epidemic models. Lachiany M; Louzoun Y Phys Rev E; 2016 Aug; 94(2-1):022409. PubMed ID: 27627337 [TBL] [Abstract][Full Text] [Related]
55. Network inference from population-level observation of epidemics. Di Lauro F; Croix JC; Dashti M; Berthouze L; Kiss IZ Sci Rep; 2020 Nov; 10(1):18779. PubMed ID: 33139773 [TBL] [Abstract][Full Text] [Related]
56. Global stability of a multi-group model with vaccination age, distributed delay and random perturbation. Xu J; Zhou Y Math Biosci Eng; 2015 Oct; 12(5):1083-106. PubMed ID: 26280186 [TBL] [Abstract][Full Text] [Related]
57. Assessing inference of the basic reproduction number in an SIR model incorporating a growth-scaling parameter. Ganyani T; Faes C; Chowell G; Hens N Stat Med; 2018 Dec; 37(29):4490-4506. PubMed ID: 30117184 [TBL] [Abstract][Full Text] [Related]
58. Effective degree network disease models. Lindquist J; Ma J; van den Driessche P; Willeboordse FH J Math Biol; 2011 Feb; 62(2):143-64. PubMed ID: 20179932 [TBL] [Abstract][Full Text] [Related]
59. Spreading dynamics on complex networks: a general stochastic approach. Noël PA; Allard A; Hébert-Dufresne L; Marceau V; Dubé LJ J Math Biol; 2014 Dec; 69(6-7):1627-60. PubMed ID: 24366372 [TBL] [Abstract][Full Text] [Related]
60. The basic reproduction number as a predictor for epidemic outbreaks in temporal networks. Holme P; Masuda N PLoS One; 2015; 10(3):e0120567. PubMed ID: 25793764 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]