These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 2337774)

  • 1. Input-output relationships in the jaw and orofacial motor zones of the cat cerebral cortex.
    Iwata K; Muramatsu H; Tsuboi Y; Sumino R
    Brain Res; 1990 Jan; 507(2):337-40. PubMed ID: 2337774
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Movements of the jaw and orofacial regions evoked by stimulation of two different cortical areas in cats.
    Iwata K; Itoga H; Ikukawa A; Hanashima N; Sumino R
    Brain Res; 1985 Dec; 359(1-2):332-7. PubMed ID: 4075154
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Topographical distribution and functional properties of cortically induced rhythmical jaw movements in the monkey (Macaca fascicularis).
    Huang CS; Hiraba H; Murray GM; Sessle BJ
    J Neurophysiol; 1989 Mar; 61(3):635-50. PubMed ID: 2709104
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional properties of single neurons in the face primary motor cortex of the primate. I. Input and output features of tongue motor cortex.
    Murray GM; Sessle BJ
    J Neurophysiol; 1992 Mar; 67(3):747-58. PubMed ID: 1578252
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Input-output relationships of the primary face motor cortex in the monkey (Macaca fascicularis).
    Huang CS; Hiraba H; Sessle BJ
    J Neurophysiol; 1989 Feb; 61(2):350-62. PubMed ID: 2918359
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Organization of cortical processing for facial movements during licking in cats.
    Hiraba H; Sato T; Saito K; Iwakami T; Mizoguchi N; Fukano M; Ueda K
    Somatosens Mot Res; 2007 Sep; 24(3):115-26. PubMed ID: 17853054
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low threshold unilateral and bilateral facial movements evoked by motor cortex stimulation in cats.
    Guandalini P; Franchi G; Spidalieri G
    Brain Res; 1990 Feb; 508(2):273-82. PubMed ID: 2306618
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cortical control of mastication in cats. 2. Deficits of masticatory movements following a lesion in the motor cortex.
    Hiraba H; Sato T
    Somatosens Mot Res; 2005 Sep; 22(3):183-92. PubMed ID: 16338826
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Features of cortically evoked swallowing in the awake primate (Macaca fascicularis).
    Martin RE; Kemppainen P; Masuda Y; Yao D; Murray GM; Sessle BJ
    J Neurophysiol; 1999 Sep; 82(3):1529-41. PubMed ID: 10482767
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Organization of the primate face motor cortex as revealed by intracortical microstimulation and electrophysiological identification of afferent inputs and corticobulbar projections.
    Huang CS; Sirisko MA; Hiraba H; Murray GM; Sessle BJ
    J Neurophysiol; 1988 Mar; 59(3):796-818. PubMed ID: 2835448
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The relationship between two separate jaw and orofacial motor cortical areas in the cat.
    Iwata K; Muramatsu H; Tsuboi Y; Araki T; Takeuchi M; Sumino R
    J Nihon Univ Sch Dent; 1987 Sep; 29(3):180-4. PubMed ID: 3480945
    [No Abstract]   [Full Text] [Related]  

  • 12. Comparison of electrical thresholds for evoking movements from sensori-motor areas of the cat cerebral cortex and its relation to motor training.
    Ghosh S; Koh AH; Ring A
    Somatosens Mot Res; 2004 Jun; 21(2):99-115. PubMed ID: 15370091
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low-threshold motor effects produced by stimulation of the facial area of the fifth somatosensory cortex in the cat.
    Mori A; Yamaguchi Y; Kikuta R; Furukawa T; Sumino R
    Brain Res; 1993 Jan; 602(1):143-7. PubMed ID: 8448652
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of motor areas of the cat cerebral cortex based on studies of cortical stimulation and corticospinal connections.
    Ghosh S
    J Comp Neurol; 1997 Apr; 380(2):191-214. PubMed ID: 9100132
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Localization of central rhythm generator involved in cortically induced rhythmical masticatory jaw-opening movement in the guinea pig.
    Nozaki S; Iriki A; Nakamura Y
    J Neurophysiol; 1986 Apr; 55(4):806-25. PubMed ID: 3517246
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationship between jaw movements and trigeminal motoneuron membrane-potential fluctuations during cortically induced rhythmical jaw movements in the guinea pig.
    Goldberg LJ; Chandler SH; Tal M
    J Neurophysiol; 1982 Jul; 48(1):110-38. PubMed ID: 7119840
    [No Abstract]   [Full Text] [Related]  

  • 17. [Ipsilateral motor responses of the facial muscles to intracortical microstimulation in the white mouse].
    Lenkov DN; Pronichev IV
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1986; 36(4):744-50. PubMed ID: 3765842
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuroplasticity of face primary motor cortex control of orofacial movements.
    Sessle BJ; Adachi K; Avivi-Arber L; Lee J; Nishiura H; Yao D; Yoshino K
    Arch Oral Biol; 2007 Apr; 52(4):334-7. PubMed ID: 17174267
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of corticobulbar projection neurons in cortically induced rhythmical masticatory jaw-opening movement in the guinea pig.
    Nozaki S; Iriki A; Nakamura Y
    J Neurophysiol; 1986 Apr; 55(4):826-45. PubMed ID: 3517247
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The function of sensory information from the first somatosensory cortex for facial movements during ingestion in cats.
    Hiraba H
    Somatosens Mot Res; 2004 Jun; 21(2):87-97. PubMed ID: 15370090
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.