These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 23377988)

  • 1. Nanostructured scaffolds for bone tissue engineering.
    Li X; Wang L; Fan Y; Feng Q; Cui FZ; Watari F
    J Biomed Mater Res A; 2013 Aug; 101(8):2424-35. PubMed ID: 23377988
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Graphene and its nanostructure derivatives for use in bone tissue engineering: Recent advances.
    Shadjou N; Hasanzadeh M
    J Biomed Mater Res A; 2016 May; 104(5):1250-75. PubMed ID: 26748447
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Addition of nanoscaled bioinspired surface features: A revolution for bone related implants and scaffolds?
    Bruinink A; Bitar M; Pleskova M; Wick P; Krug HF; Maniura-Weber K
    J Biomed Mater Res A; 2014 Jan; 102(1):275-94. PubMed ID: 23468287
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Macroporous scaffolds associated with cells to construct a hybrid biomaterial for bone tissue engineering.
    Rosa AL; de Oliveira PT; Beloti MM
    Expert Rev Med Devices; 2008 Nov; 5(6):719-28. PubMed ID: 19025348
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new method of fabricating robust freeform 3D ceramic scaffolds for bone tissue regeneration.
    Seol YJ; Park DY; Park JY; Kim SW; Park SJ; Cho DW
    Biotechnol Bioeng; 2013 May; 110(5):1444-55. PubMed ID: 23192318
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Processing-structure-functional property relationship in organic-inorganic nanostructured scaffolds for bone-tissue engineering: the response of preosteoblasts.
    Depan D; Misra RD
    J Biomed Mater Res A; 2012 Nov; 100(11):3080-91. PubMed ID: 22733690
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bone tissue engineering: current strategies and techniques--part I: Scaffolds.
    Szpalski C; Wetterau M; Barr J; Warren SM
    Tissue Eng Part B Rev; 2012 Aug; 18(4):246-57. PubMed ID: 22029448
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrospun nanofibrous 3D scaffold for bone tissue engineering.
    Eap S; Ferrand A; Palomares CM; Hébraud A; Stoltz JF; Mainard D; Schlatter G; Benkirane-Jessel N
    Biomed Mater Eng; 2012; 22(1-3):137-41. PubMed ID: 22766712
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tissue engineering scaffolds for the regeneration of craniofacial bone.
    Chan WD; Perinpanayagam H; Goldberg HA; Hunter GK; Dixon SJ; Santos GC; Rizkalla AS
    J Can Dent Assoc; 2009 Jun; 75(5):373-7. PubMed ID: 19531334
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bone augmentation with autologous periosteal cells and two different calcium phosphate scaffolds under an occlusive titanium barrier: an experimental study in rabbits.
    Maréchal M; Eyckmans J; Schrooten J; Schepers E; Luyten FP; van Steenberghe D
    J Periodontol; 2008 May; 79(5):896-904. PubMed ID: 18454669
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanotechnology for bone materials.
    Tran N; Webster TJ
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2009; 1(3):336-51. PubMed ID: 20049801
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel route in bone tissue engineering: magnetic biomimetic scaffolds.
    Bock N; Riminucci A; Dionigi C; Russo A; Tampieri A; Landi E; Goranov VA; Marcacci M; Dediu V
    Acta Biomater; 2010 Mar; 6(3):786-96. PubMed ID: 19788946
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and manufacture of combinatorial calcium phosphate bone scaffolds.
    Hoelzle DJ; Svientek SR; Alleyne AG; Wagoner Johnson AJ
    J Biomech Eng; 2011 Oct; 133(10):101001. PubMed ID: 22070326
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The enhancement of bone regeneration by a combination of osteoconductivity and osteostimulation using β-CaSiO3/β-Ca3(PO4)2 composite bioceramics.
    Wang C; Xue Y; Lin K; Lu J; Chang J; Sun J
    Acta Biomater; 2012 Jan; 8(1):350-60. PubMed ID: 21925627
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bone tissue formation under ideal conditions in a scaffold generated by a reaction-diffusion system.
    Velasco AM; Garzón-Alvarado DA
    Mol Cell Biomech; 2013 Jun; 10(2):137-57. PubMed ID: 24015480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Processing nanoengineered scaffolds through electrospinning and mineralization suitable for biomimetic bone tissue engineering.
    Liao S; Murugan R; Chan CK; Ramakrishna S
    J Mech Behav Biomed Mater; 2008 Jul; 1(3):252-60. PubMed ID: 19627790
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Manufacture of degradable polymeric scaffolds for bone regeneration.
    Ge Z; Jin Z; Cao T
    Biomed Mater; 2008 Jun; 3(2):022001. PubMed ID: 18523339
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [A review of research progress on biological effects about nanometer scaffold for bone tissue engineering].
    Li B; He H; Liao X; Fan H; Zhang X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2011 Oct; 28(5):1035-9. PubMed ID: 22097278
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanostructured polymeric scaffolds for orthopaedic regenerative engineering.
    Deng M; James R; Laurencin CT; Kumbar SG
    IEEE Trans Nanobioscience; 2012 Mar; 11(1):3-14. PubMed ID: 22275722
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon nanotubes: directions and perspectives in oral regenerative medicine.
    Martins-Júnior PA; Alcântara CE; Resende RR; Ferreira AJ
    J Dent Res; 2013 Jul; 92(7):575-83. PubMed ID: 23677650
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.