BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

449 related articles for article (PubMed ID: 23378000)

  • 1. Mass spectrometry-based proteomics: basic principles and emerging technologies and directions.
    Van Riper SK; de Jong EP; Carlis JV; Griffin TJ
    Adv Exp Med Biol; 2013; 990():1-35. PubMed ID: 23378000
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteomics technologies for the global identification and quantification of proteins.
    Brewis IA; Brennan P
    Adv Protein Chem Struct Biol; 2010; 80():1-44. PubMed ID: 21109216
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extended Range Proteomic Analysis (ERPA): a new and sensitive LC-MS platform for high sequence coverage of complex proteins with extensive post-translational modifications-comprehensive analysis of beta-casein and epidermal growth factor receptor (EGFR).
    Wu SL; Kim J; Hancock WS; Karger B
    J Proteome Res; 2005; 4(4):1155-70. PubMed ID: 16083266
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methods and approaches for the comprehensive characterization and quantification of cellular proteomes using mass spectrometry.
    Mirza SP; Olivier M
    Physiol Genomics; 2008 Mar; 33(1):3-11. PubMed ID: 18162499
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of LC/MS to proteomics studies: current status and future prospects.
    Chen G; Pramanik BN
    Drug Discov Today; 2009 May; 14(9-10):465-71. PubMed ID: 19429505
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isotope coded protein label quantification of serum proteins--comparison with the label-free LC-MS and validation using the MRM approach.
    Turtoi A; Mazzucchelli GD; De Pauw E
    Talanta; 2010 Feb; 80(4):1487-95. PubMed ID: 20082806
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative, high-resolution proteomics for data-driven systems biology.
    Cox J; Mann M
    Annu Rev Biochem; 2011; 80():273-99. PubMed ID: 21548781
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A review on recent developments in mass spectrometry instrumentation and quantitative tools advancing bacterial proteomics.
    Van Oudenhove L; Devreese B
    Appl Microbiol Biotechnol; 2013 Jun; 97(11):4749-62. PubMed ID: 23624659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards comprehensive and quantitative proteomics for diagnosis and therapy of human disease.
    Cifani P; Kentsis A
    Proteomics; 2017 Jan; 17(1-2):. PubMed ID: 27775219
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Current trends in computational inference from mass spectrometry-based proteomics.
    Webb-Robertson BJ; Cannon WR
    Brief Bioinform; 2007 Sep; 8(5):304-17. PubMed ID: 17584764
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of mass spectrometry in proteomics.
    Guerrera IC; Kleiner O
    Biosci Rep; 2005; 25(1-2):71-93. PubMed ID: 16222421
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mass spectrometry-based proteomics: existing capabilities and future directions.
    Angel TE; Aryal UK; Hengel SM; Baker ES; Kelly RT; Robinson EW; Smith RD
    Chem Soc Rev; 2012 May; 41(10):3912-28. PubMed ID: 22498958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gel-free mass spectrometry-based high throughput proteomics: tools for studying biological response of proteins and proteomes.
    Roe MR; Griffin TJ
    Proteomics; 2006 Sep; 6(17):4678-87. PubMed ID: 16888762
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modular stop and go extraction tips with stacked disks for parallel and multidimensional Peptide fractionation in proteomics.
    Ishihama Y; Rappsilber J; Mann M
    J Proteome Res; 2006 Apr; 5(4):988-94. PubMed ID: 16602707
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The proteomic future: where mass spectrometry should be taking us.
    Thelen JJ; Miernyk JA
    Biochem J; 2012 Jun; 444(2):169-81. PubMed ID: 22574775
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advances and challenges in liquid chromatography-mass spectrometry-based proteomics profiling for clinical applications.
    Qian WJ; Jacobs JM; Liu T; Camp DG; Smith RD
    Mol Cell Proteomics; 2006 Oct; 5(10):1727-44. PubMed ID: 16887931
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of targeted mass spectrometry in bottom-up proteomics for systems biology research.
    Manes NP; Nita-Lazar A
    J Proteomics; 2018 Oct; 189():75-90. PubMed ID: 29452276
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Challenges and strategies for targeted phosphorylation site identification and quantification using mass spectrometry analysis.
    Blackburn K; Goshe MB
    Brief Funct Genomic Proteomic; 2009 Mar; 8(2):90-103. PubMed ID: 19109306
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mass spectrometry technologies for proteomics.
    Cañas B; López-Ferrer D; Ramos-Fernández A; Camafeita E; Calvo E
    Brief Funct Genomic Proteomic; 2006 Feb; 4(4):295-320. PubMed ID: 17202122
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mass spectrometers for the analysis of biomolecules.
    Baldwin MA
    Methods Enzymol; 2005; 402():3-48. PubMed ID: 16401505
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.