BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 23378088)

  • 1. High-energy collision-induced dissociation of [M+Na]+ ions desorbed by fast atom bombardment of ceramides isolated from the starfish Distolasterias nipon.
    Yoo JS; Park T; Bang G; Lee C; Rho JR; Kim YH
    J Mass Spectrom; 2013 Feb; 48(2):164-71. PubMed ID: 23378088
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural determination of cerebrosides isolated from Asterias amurensis starfish eggs using high-energy collision-induced dissociation of sodium-adducted molecules.
    Park T; Park YS; Rho JR; Kim YH
    Rapid Commun Mass Spectrom; 2011 Mar; 25(5):572-8. PubMed ID: 21290443
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative analysis of ceramide structural modification found in fungal cerebrosides by electrospray tandem mass spectrometry with low energy collision-induced dissociation of Li+ adduct ions.
    Levery SB; Toledo MS; Doong RL; Straus AH; Takahashi HK
    Rapid Commun Mass Spectrom; 2000; 14(7):551-63. PubMed ID: 10775088
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural elucidation of the ceramide moiety of starfish gangliosides by collision-induced dissociation of the sodium ion complex.
    Inagaki M; Isobe R; Miyamoto T; Higuchi R
    Chem Pharm Bull (Tokyo); 1999 Aug; 47(8):1184-7. PubMed ID: 10478474
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural determination of glucosylceramides isolated from marine sponge by fast atom bombardment collision-induced dissociation linked scan at constant B/E.
    Ahn YM; Lee WW; Jung JH; Lee SG; Hong J
    J Mass Spectrom; 2009 Dec; 44(12):1698-708. PubMed ID: 19824038
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural determination of saponins extracted from starfish by fast atom bombardment collision-induced dissociation mass spectrometry.
    Gil JH; Jung JH; Kim KJ; Kim MS; Hong J
    Anal Sci; 2006 Apr; 22(4):641-4. PubMed ID: 16760614
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A lipidomic platform establishment for structural identification of skin ceramides with non-hydroxyacyl chains.
    Shin JH; Shon JC; Lee K; Kim S; Park CS; Choi EH; Lee CH; Lee HS; Liu KH
    Anal Bioanal Chem; 2014 Mar; 406(7):1917-32. PubMed ID: 24458481
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Profiling and characterizing skin ceramides using reversed-phase liquid chromatography-quadrupole time-of-flight mass spectrometry.
    t'Kindt R; Jorge L; Dumont E; Couturon P; David F; Sandra P; Sandra K
    Anal Chem; 2012 Jan; 84(1):403-11. PubMed ID: 22111752
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of triacylglycerols containing two short-chain fatty acids at sn-2 and sn-3 positions from bovine udder by fast atom bombardment tandem mass spectrometry.
    Kim YH; So KY; Limb JK; Jhon GJ; Han SY
    Rapid Commun Mass Spectrom; 2000; 14(23):2230-7. PubMed ID: 11114033
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ceramide profiling of complex lipid mixtures by electrospray ionization mass spectrometry.
    Gu M; Kerwin JL; Watts JD; Aebersold R
    Anal Biochem; 1997 Jan; 244(2):347-56. PubMed ID: 9025952
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative analysis of glycosylinositol phosphorylceramides from fungi by electrospray tandem mass spectrometry with low-energy collision-induced dissociation of Li(+) adduct ions.
    Levery SB; Toledo MS; Straus AH; Takahashi HK
    Rapid Commun Mass Spectrom; 2001; 15(23):2240-58. PubMed ID: 11746891
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of sphingomyelin, glucosylceramide, ceramide, sphingosine, and sphingosine 1-phosphate by tandem mass spectrometry.
    Sullards MC
    Methods Enzymol; 2000; 312():32-45. PubMed ID: 11070861
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrospray ionization with higher-energy collision dissociation tandem mass spectrometry toward characterization of ceramides as [M + Li]
    Hsu FF
    Anal Chim Acta; 2021 Jan; 1142():221-234. PubMed ID: 33280700
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural identification of skin ceramides containing ω-hydroxy acyl chains using mass spectrometry.
    Wu Z; Shon JC; Kim JY; Cho Y; Liu KH
    Arch Pharm Res; 2016 Oct; 39(10):1426-1432. PubMed ID: 27432202
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural determination of lysophosphatidylcholines extracted from marine sponges by fast atom bombardment tandem mass spectrometry.
    Hong J; Cho K; Kim YH; Cheong C; Lee KS; Jung JH
    Rapid Commun Mass Spectrom; 2001; 15(13):1120-6. PubMed ID: 11404849
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of ceramides in cosmetics by reversed-phase liquid chromatography/electrospray ionization mass spectrometry with collision-induced dissociation.
    Lee MH; Lee GH; Yoo JS
    Rapid Commun Mass Spectrom; 2003; 17(1):64-75. PubMed ID: 12478556
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural studies on ceramides as lithiated adducts by low energy collisional-activated dissociation tandem mass spectrometry with electrospray ionization.
    Hsu FF; Turk J; Stewart ME; Downing DT
    J Am Soc Mass Spectrom; 2002 Jun; 13(6):680-95. PubMed ID: 12056568
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural identification of glycerolipid molecular species isolated from cyanobacterium Synechocystis sp. PCC 6803 using fast atom bombardment tandem mass spectrometry.
    Kim YH; Choi JS; Yoo JS; Park YM; Kim MS
    Anal Biochem; 1999 Feb; 267(2):260-70. PubMed ID: 10036129
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Qualitative on-line profiling of ceramides and cerebrosides by high performance liquid chromatography coupled with electrospray ionization ion trap tandem mass spectrometry: the case of Dracontium loretense.
    Napolitano A; Benavides A; Pizza C; Piacente S
    J Pharm Biomed Anal; 2011 Apr; 55(1):23-30. PubMed ID: 21282027
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reactivity of gaseous sodiated ions derived from benzene dicarboxylate salts toward residual water in the collision gas.
    Chan CC; Axe FU; Bolgar M; Attygalle AB
    J Mass Spectrom; 2010 Oct; 45(10):1130-8. PubMed ID: 20853346
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.