These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 23378091)
41. Isolation and characterization of macromolecular protein R-Phycoerythrin from Portieria hornemannii. Senthilkumar N; Suresh V; Thangam R; Kurinjimalar C; Kavitha G; Murugan P; Kannan S; Rengasamy R Int J Biol Macromol; 2013 Apr; 55():150-60. PubMed ID: 23318198 [TBL] [Abstract][Full Text] [Related]
42. Very Bright Phycoerythrobilin Chromophore for Fluorescence Biolabeling. Hou YN; Ding WL; Hu JL; Jiang XX; Tan ZZ; Zhao KH Chembiochem; 2019 Nov; 20(21):2777-2783. PubMed ID: 31145526 [TBL] [Abstract][Full Text] [Related]
43. Decomposition of ESR spectra using MALDI-TOF mass spectrometry. Vos WL; Vermeer LS; Wolfs CJ; Spruijt RB; Hemminga MA Anal Chem; 2006 Aug; 78(15):5296-301. PubMed ID: 16878862 [TBL] [Abstract][Full Text] [Related]
44. Glycation pattern of peptides condensed with maltose, lactose and glucose determined by ultraviolet matrix-assisted laser desorption/ionization tandem mass spectrometry. Montgomery H; Tanaka K; Belgacem O Rapid Commun Mass Spectrom; 2010 Mar; 24(6):841-8. PubMed ID: 20187122 [TBL] [Abstract][Full Text] [Related]
45. De novo sequencing of tryptic peptides sulfonated by 4-sulfophenyl isothiocyanate for unambiguous protein identification using post-source decay matrix-assisted laser desorption/ionization mass spectrometry. Chen P; Nie S; Mi W; Wang XC; Liang SP Rapid Commun Mass Spectrom; 2004; 18(2):191-8. PubMed ID: 14745769 [TBL] [Abstract][Full Text] [Related]
46. High-resolution matrix-assisted laser desorption/ionization imaging of tryptic peptides from tissue. Schober Y; Guenther S; Spengler B; Römpp A Rapid Commun Mass Spectrom; 2012 May; 26(9):1141-6. PubMed ID: 22467465 [TBL] [Abstract][Full Text] [Related]
47. Nanodiamond-based two-step sampling of multiply and singly phosphorylated peptides for MALDI-TOF mass spectrometry analysis. Shiau KJ; Hung SU; Lee HW; Wu CC Analyst; 2011 May; 136(9):1922-7. PubMed ID: 21403954 [TBL] [Abstract][Full Text] [Related]
48. Dansyl-peptides matrix-assisted laser desorption/ionization mass spectrometric (MALDI-MS) and tandem mass spectrometric (MS/MS) features improve the liquid chromatography/MALDI-MS/MS analysis of the proteome. Chiappetta G; Ndiaye S; Demey E; Haddad I; Marino G; Amoresano A; Vinh J Rapid Commun Mass Spectrom; 2010 Oct; 24(20):3021-32. PubMed ID: 20872635 [TBL] [Abstract][Full Text] [Related]
49. Multifunctional nanoparticles composite for MALDI-MS: Cd2+-doped carbon nanotubes with CdS nanoparticles as the matrix, preconcentrating and accelerating probes of microwave enzymatic digestion of peptides and proteins for direct MALDI-MS analysis. Shrivas K; Wu HF J Mass Spectrom; 2010 Dec; 45(12):1452-60. PubMed ID: 21053343 [TBL] [Abstract][Full Text] [Related]
50. Effects of common surfactants on protein digestion and matrix-assisted laser desorption/ionization mass spectrometric analysis of the digested peptides using two-layer sample preparation. Zhang N; Li L Rapid Commun Mass Spectrom; 2004; 18(8):889-96. PubMed ID: 15095358 [TBL] [Abstract][Full Text] [Related]
51. Structural basis for the photochemistry of alpha-phycoerythrocyanin. Schmidt M; Patel A; Zhao Y; Reuter W Biochemistry; 2007 Jan; 46(2):416-23. PubMed ID: 17209552 [TBL] [Abstract][Full Text] [Related]
52. Direct analysis of the kinetic profiles of organophosphate-acetylcholinesterase adducts by MALDI-TOF mass spectrometry. Jennings LL; Malecki M; Komives EA; Taylor P Biochemistry; 2003 Sep; 42(37):11083-91. PubMed ID: 12974645 [TBL] [Abstract][Full Text] [Related]
53. Characterization of the bilin attachment sites in R-phycoerythrin. Klotz AV; Glazer AN J Biol Chem; 1985 Apr; 260(8):4856-63. PubMed ID: 3886644 [TBL] [Abstract][Full Text] [Related]
54. Protease-catalyzed incorporation of 18O into peptide fragments and its application for protein sequencing by electrospray and matrix-assisted laser desorption/ionization mass spectrometry. Schnölzer M; Jedrzejewski P; Lehmann WD Electrophoresis; 1996 May; 17(5):945-53. PubMed ID: 8783021 [TBL] [Abstract][Full Text] [Related]
55. The biliverdin chromophore binds covalently to a conserved cysteine residue in the N-terminus of Agrobacterium phytochrome Agp1. Lamparter T; Carrascal M; Michael N; Martinez E; Rottwinkel G; Abian J Biochemistry; 2004 Mar; 43(12):3659-69. PubMed ID: 15035636 [TBL] [Abstract][Full Text] [Related]
56. Phycobilins of cryptophycean algae. Novel linkage of dihydrobiliverdin in a phycoerythrin 555 and a phycocyanin 645. Wemmer DE; Wedemayer GJ; Glazer AN J Biol Chem; 1993 Jan; 268(3):1658-69. PubMed ID: 8420941 [TBL] [Abstract][Full Text] [Related]
57. Phycobilin heterologous production from the Rhodophyta Porphyridium cruentum. Montoya EJO; Dorion S; Atehortua-Garcés L; Rivoal J J Biotechnol; 2021 Nov; 341():30-42. PubMed ID: 34500003 [TBL] [Abstract][Full Text] [Related]
58. Characterization of the activities of the CpeY, CpeZ, and CpeS bilin lyases in phycoerythrin biosynthesis in Fremyella diplosiphon strain UTEX 481. Biswas A; Boutaghou MN; Alvey RM; Kronfel CM; Cole RB; Bryant DA; Schluchter WM J Biol Chem; 2011 Oct; 286(41):35509-35521. PubMed ID: 21865169 [TBL] [Abstract][Full Text] [Related]
59. Approach for determining protein ubiquitination sites by MALDI-TOF mass spectrometry. Wang D; Cotter RJ Anal Chem; 2005 Mar; 77(5):1458-66. PubMed ID: 15732931 [TBL] [Abstract][Full Text] [Related]
60. Effects of PAR and UV Radiation on the Structural and Functional Integrity of Phycocyanin, Phycoerythrin and Allophycocyanin Isolated from the Marine Cyanobacterium Lyngbya sp. A09DM. Rastogi RP; Sonani RR; Madamwar D Photochem Photobiol; 2015; 91(4):837-44. PubMed ID: 25763657 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]