BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 23378263)

  • 1. hZip1 (hSLC39A1) regulates zinc homoeostasis in gut epithelial cells.
    Michalczyk AA; Ackland ML
    Genes Nutr; 2013 Sep; 8(5):475-86. PubMed ID: 23378263
    [TBL] [Abstract][Full Text] [Related]  

  • 2. hZIP1 zinc uptake transporter down regulation and zinc depletion in prostate cancer.
    Franklin RB; Feng P; Milon B; Desouki MM; Singh KK; Kajdacsy-Balla A; Bagasra O; Costello LC
    Mol Cancer; 2005 Sep; 4():32. PubMed ID: 16153295
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human ZIP1 is a major zinc uptake transporter for the accumulation of zinc in prostate cells.
    Franklin RB; Ma J; Zou J; Guan Z; Kukoyi BI; Feng P; Costello LC
    J Inorg Biochem; 2003 Aug; 96(2-3):435-42. PubMed ID: 12888280
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The human ZIP1 transporter mediates zinc uptake in human K562 erythroleukemia cells.
    Gaither LA; Eide DJ
    J Biol Chem; 2001 Jun; 276(25):22258-64. PubMed ID: 11301334
    [TBL] [Abstract][Full Text] [Related]  

  • 5. hZIP1 zinc transporter down-regulation in prostate cancer involves the overexpression of ras responsive element binding protein-1 (RREB-1).
    Zou J; Milon BC; Desouki MM; Costello LC; Franklin RB
    Prostate; 2011 Oct; 71(14):1518-24. PubMed ID: 21360563
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptional regulation of the major zinc uptake protein hZip1 in prostate cancer cells.
    Makhov P; Golovine K; Uzzo RG; Wuestefeld T; Scoll BJ; Kolenko VM
    Gene; 2009 Feb; 431(1-2):39-46. PubMed ID: 19026724
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential subcellular localization of hZip1 in adherent and non-adherent cells.
    Milon B; Dhermy D; Pountney D; Bourgeois M; Beaumont C
    FEBS Lett; 2001 Nov; 507(3):241-6. PubMed ID: 11696349
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Overexpression of the zinc uptake transporter hZIP1 inhibits nuclear factor-kappaB and reduces the malignant potential of prostate cancer cells in vitro and in vivo.
    Golovine K; Makhov P; Uzzo RG; Shaw T; Kunkle D; Kolenko VM
    Clin Cancer Res; 2008 Sep; 14(17):5376-84. PubMed ID: 18765529
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ras responsive element binding protein-1 (RREB-1) down-regulates hZIP1 expression in prostate cancer cells.
    Milon BC; Agyapong A; Bautista R; Costello LC; Franklin RB
    Prostate; 2010 Feb; 70(3):288-96. PubMed ID: 19802870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GAS5 functions as a ceRNA to regulate hZIP1 expression by sponging miR-223 in clear cell renal cell carcinoma.
    Dong X; Kong C; Liu X; Bi J; Li Z; Li Z; Zhu Y; Zhang Z
    Am J Cancer Res; 2018; 8(8):1414-1426. PubMed ID: 30210913
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differentiation- and polarization-dependent zinc tolerance in Caco-2 cells.
    Zemann N; Zemann A; Klein P; Elmadfa I; Huettinger M
    Eur J Nutr; 2011 Aug; 50(5):379-86. PubMed ID: 21103883
    [TBL] [Abstract][Full Text] [Related]  

  • 12. hZIP1 that is down-regulated in clear cell renal cell carcinoma is negatively associated with the malignant potential of the tumor.
    Dong X; Kong C; Zhang Z; Liu X; Zhan B; Chen Z; Shi D
    Urol Oncol; 2014 Aug; 32(6):885-92. PubMed ID: 24878177
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional and molecular responses of human intestinal Caco-2 cells to iron treatment.
    Tallkvist J; Bowlus CL; Lönnerdal B
    Am J Clin Nutr; 2000 Sep; 72(3):770-5. PubMed ID: 10966897
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Histidine residues in the region between transmembrane domains III and IV of hZip1 are required for zinc transport across the plasma membrane in PC-3 cells.
    Milon B; Wu Q; Zou J; Costello LC; Franklin RB
    Biochim Biophys Acta; 2006 Oct; 1758(10):1696-701. PubMed ID: 16844077
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of bioactive dietary polyphenols on zinc transport across the intestinal Caco-2 cell monolayers.
    Kim EY; Pai TK; Han O
    J Agric Food Chem; 2011 Apr; 59(8):3606-12. PubMed ID: 21410257
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A strategy for isolation of cDNAs encoding proteins affecting human intestinal epithelial cell growth and differentiation: characterization of a novel gut-specific N-myristoylated annexin.
    Wice BM; Gordon JI
    J Cell Biol; 1992 Jan; 116(2):405-22. PubMed ID: 1530946
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GLUT12 expression and regulation in murine small intestine and human Caco-2 cells.
    Gil-Iturbe E; Castilla-Madrigal R; Barrenetxe J; Villaro AC; Lostao MP
    J Cell Physiol; 2019 Apr; 234(4):4396-4408. PubMed ID: 30352123
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Overexpression of the ZIP1 zinc transporter induces an osteogenic phenotype in mesenchymal stem cells.
    Tang Z; Sahu SN; Khadeer MA; Bai G; Franklin RB; Gupta A
    Bone; 2006 Feb; 38(2):181-98. PubMed ID: 16203195
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Basal nutrition promotes human intestinal epithelial (Caco-2) proliferation, brush border enzyme activity, and motility.
    Perdikis DA; Basson MD
    Crit Care Med; 1997 Jan; 25(1):159-65. PubMed ID: 8989193
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Soybean extracts increase cell surface ZIP4 abundance and cellular zinc levels: a potential novel strategy to enhance zinc absorption by ZIP4 targeting.
    Hashimoto A; Ohkura K; Takahashi M; Kizu K; Narita H; Enomoto S; Miyamae Y; Masuda S; Nagao M; Irie K; Ohigashi H; Andrews GK; Kambe T
    Biochem J; 2015 Dec; 472(2):183-93. PubMed ID: 26385990
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.