BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 23378280)

  • 1. Nano-hydroxyapatite surfaces grafted with electroactive aniline tetramers for bone-tissue engineering.
    Liu Y; Cui H; Zhuang X; Zhang P; Cui Y; Wang X; Wei Y; Chen X
    Macromol Biosci; 2013 Mar; 13(3):356-65. PubMed ID: 23378280
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coating nanothickness degradable films on nanocrystalline hydroxyapatite particles to improve the bonding strength between nanohydroxyapatite and degradable polymer matrix.
    Nichols HL; Zhang N; Zhang J; Shi D; Bhaduri S; Wen X
    J Biomed Mater Res A; 2007 Aug; 82(2):373-82. PubMed ID: 17295227
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of negatively charged cellulose nanofibers on the dispersion of hydroxyapatite nanoparticles for scaffolds in bone tissue engineering.
    Park M; Lee D; Shin S; Hyun J
    Colloids Surf B Biointerfaces; 2015 Jun; 130():222-8. PubMed ID: 25910635
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation and characterization of nano-hydroxyapatite/chitosan composite scaffolds.
    Kong L; Gao Y; Cao W; Gong Y; Zhao N; Zhang X
    J Biomed Mater Res A; 2005 Nov; 75(2):275-82. PubMed ID: 16044404
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and characterization of novel biodegradable and electroactive hydrogel based on aniline oligomer and gelatin.
    Liu Y; Hu J; Zhuang X; Zhang P; Wei Y; Wang X; Chen X
    Macromol Biosci; 2012 Feb; 12(2):241-50. PubMed ID: 22028067
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced healing of rat calvarial critical size defect with selenium-doped lamellar biocomposites.
    Wang Y; Lv P; Ma Z; Zhang J
    Biol Trace Elem Res; 2013 Oct; 155(1):72-81. PubMed ID: 23892698
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The surface modification of hydroxyapatite nanoparticles by the ring opening polymerization of gamma-benzyl-l-glutamate N-carboxyanhydride.
    Wei J; Liu A; Chen L; Zhang P; Chen X; Jing X
    Macromol Biosci; 2009 Jul; 9(7):631-8. PubMed ID: 19165825
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells.
    Oliveira JM; Rodrigues MT; Silva SS; Malafaya PB; Gomes ME; Viegas CA; Dias IR; Azevedo JT; Mano JF; Reis RL
    Biomaterials; 2006 Dec; 27(36):6123-37. PubMed ID: 16945410
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and characterization of a novel chitosan/montmorillonite/hydroxyapatite nanocomposite for bone tissue engineering.
    Katti KS; Katti DR; Dash R
    Biomed Mater; 2008 Sep; 3(3):034122. PubMed ID: 18765898
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new hydroxyapatite-based biocomposite for bone replacement.
    Bellucci D; Sola A; Gazzarri M; Chiellini F; Cannillo V
    Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1091-101. PubMed ID: 23827547
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of biodegradable and electroactive tetraaniline grafted poly(ester amide) copolymers for bone tissue engineering.
    Cui H; Liu Y; Deng M; Pang X; Zhang P; Wang X; Chen X; Wei Y
    Biomacromolecules; 2012 Sep; 13(9):2881-9. PubMed ID: 22909313
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanofibrous poly(lactic acid)/hydroxyapatite composite scaffolds for guided tissue regeneration.
    Jeong SI; Ko EK; Yum J; Jung CH; Lee YM; Shin H
    Macromol Biosci; 2008 Apr; 8(4):328-38. PubMed ID: 18163376
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization and biocompatibility of nanohybrid scaffold prepared via in situ crystallization of hydroxyapatite in chitosan matrix.
    Chen J; Nan K; Yin S; Wang Y; Wu T; Zhang Q
    Colloids Surf B Biointerfaces; 2010 Dec; 81(2):640-7. PubMed ID: 20817419
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [A study on nano-hydroxyapatite-chitosan scaffold for bone tissue engineering].
    Wang X; Liu L; Zhang Q
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 Feb; 21(2):120-4. PubMed ID: 17357456
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro cytotoxicity and in vivo osseointergration properties of compression-molded HDPE-HA-Al2O3 hybrid biocomposites.
    Tripathi G; Gough JE; Dinda A; Basu B
    J Biomed Mater Res A; 2013 Jun; 101(6):1539-49. PubMed ID: 23065866
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro response of human osteoblasts to multi-step sol-gel derived bioactive glass nanoparticles for bone tissue engineering.
    Fan JP; Kalia P; Di Silvio L; Huang J
    Mater Sci Eng C Mater Biol Appl; 2014 Mar; 36():206-14. PubMed ID: 24433905
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Peptide decorated nano-hydroxyapatite with enhanced bioactivity and osteogenic differentiation via polydopamine coating.
    Sun Y; Deng Y; Ye Z; Liang S; Tang Z; Wei S
    Colloids Surf B Biointerfaces; 2013 Nov; 111():107-16. PubMed ID: 23792546
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [A novel nano-hydroxyapatite/aliphatic polyesteramide composite].
    Deng X; Chen Z; Qian Z; Liu C; Li H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Apr; 25(2):378-81, 392. PubMed ID: 18610626
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gel-derived bioglass as a compound of hydroxyapatite composites.
    Cholewa-Kowalska K; Kokoszka J; Laczka M; Niedźwiedzki L; Madej W; Osyczka AM
    Biomed Mater; 2009 Oct; 4(5):055007. PubMed ID: 19779249
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The fabrication of nano-hydroxyapatite on PLGA and PLGA/collagen nanofibrous composite scaffolds and their effects in osteoblastic behavior for bone tissue engineering.
    Ngiam M; Liao S; Patil AJ; Cheng Z; Chan CK; Ramakrishna S
    Bone; 2009 Jul; 45(1):4-16. PubMed ID: 19358900
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.