These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 23378759)
1. Characterization and stability studies of a novel liposomal cyclosporin A prepared using the supercritical fluid method: comparison with the modified conventional Bangham method. Karn PR; Cho W; Park HJ; Park JS; Hwang SJ Int J Nanomedicine; 2013; 8():365-77. PubMed ID: 23378759 [TBL] [Abstract][Full Text] [Related]
2. Preparation and evaluation of cyclosporin A-containing proliposomes: a comparison of the supercritical antisolvent process with the conventional film method. Karn PR; Jin SE; Lee BJ; Sun BK; Kim MS; Sung JH; Hwang SJ Int J Nanomedicine; 2014; 9():5079-91. PubMed ID: 25395846 [TBL] [Abstract][Full Text] [Related]
3. Preparation, Characterization, and In Vivo Pharmacokinetic Study of the Supercritical Fluid-Processed Liposomal Amphotericin B. Lim CB; Abuzar SM; Karn PR; Cho W; Park HJ; Cho CW; Hwang SJ Pharmaceutics; 2019 Nov; 11(11):. PubMed ID: 31717352 [TBL] [Abstract][Full Text] [Related]
4. Engineering liposomes of leaf extract of seabuckthorn (SBT) by supercritical carbon dioxide (SCCO2)-mediated process. Ghatnur SM; Sonale RS; Balaraman M; Kadimi US J Liposome Res; 2012 Sep; 22(3):215-23. PubMed ID: 22397357 [TBL] [Abstract][Full Text] [Related]
5. Preparation of liposomes modified with lipopeptides using a supercritical carbon dioxide reverse-phase evaporation method. Aburai K; Yagi N; Yokoyama Y; Okuno H; Sakai K; Sakai H; Sakamoto K; Abe M J Oleo Sci; 2011; 60(5):209-15. PubMed ID: 21502720 [TBL] [Abstract][Full Text] [Related]
6. Dispersibility of phospholipids and their optimization for the efficient production of liposomes using supercritical fluid technology. Maqbool F; Moyle PM; Thurecht KJ; Falconer JR Int J Pharm; 2019 May; 563():174-183. PubMed ID: 30940503 [TBL] [Abstract][Full Text] [Related]
7. Supercritical fluid-mediated liposomes containing cyclosporin A for the treatment of dry eye syndrome in a rabbit model: comparative study with the conventional cyclosporin A emulsion. Karn PR; Kim HD; Kang H; Sun BK; Jin SE; Hwang SJ Int J Nanomedicine; 2014; 9():3791-800. PubMed ID: 25143728 [TBL] [Abstract][Full Text] [Related]
8. Encapsulation of lutein in liposomes using supercritical carbon dioxide. Zhao L; Temelli F; Curtis JM; Chen L Food Res Int; 2017 Oct; 100(Pt 1):168-179. PubMed ID: 28873676 [TBL] [Abstract][Full Text] [Related]
9. Simultaneous microencapsulation of hydrophilic and lipophilic bioactives in liposomes produced by an ecofriendly supercritical fluid process. Tsai WC; Rizvi SSH Food Res Int; 2017 Sep; 99(Pt 1):256-262. PubMed ID: 28784482 [TBL] [Abstract][Full Text] [Related]
10. Liposomal drug products and recent advances in the synthesis of supercritical fluid-mediated liposomes. Karn PR; Cho W; Hwang SJ Nanomedicine (Lond); 2013 Sep; 8(9):1529-48. PubMed ID: 23987112 [TBL] [Abstract][Full Text] [Related]
11. In vitro studies on liposomal amphotericin B obtained by supercritical carbon dioxide-mediated process. Kadimi US; Balasubramanian DR; Ganni UR; Balaraman M; Govindarajulu V Nanomedicine; 2007 Dec; 3(4):273-80. PubMed ID: 17962084 [TBL] [Abstract][Full Text] [Related]
12. Supercritical Fluid Technologies to Fabricate Proliposomes. Falconer JR; Svirskis D; Adil AA; Wu Z J Pharm Pharm Sci; 2015; 18(5):747-64. PubMed ID: 26670368 [TBL] [Abstract][Full Text] [Related]
13. A novel strategy to design sustained-release poorly water-soluble drug mesoporous silica microparticles based on supercritical fluid technique. Li-Hong W; Xin C; Hui X; Li-Li Z; Jing H; Mei-Juan Z; Jie L; Yi L; Jin-Wen L; Wei Z; Gang C Int J Pharm; 2013 Sep; 454(1):135-42. PubMed ID: 23871738 [TBL] [Abstract][Full Text] [Related]
14. Comparative physicochemical characterization of phospholipids complex of puerarin formulated by conventional and supercritical methods. Li Y; Yang DJ; Chen SL; Chen SB; Chan AS Pharm Res; 2008 Mar; 25(3):563-77. PubMed ID: 17828444 [TBL] [Abstract][Full Text] [Related]
15. A supercritical fluid technology for liposome production and comparison with the film hydration method. Penoy N; Grignard B; Evrard B; Piel G Int J Pharm; 2021 Jan; 592():120093. PubMed ID: 33212171 [TBL] [Abstract][Full Text] [Related]
16. Stability of niosomes with encapsulated vitamin D3 and ferrous sulfate generated using a novel supercritical carbon dioxide method. Wagner ME; Spoth KA; Kourkoutis LF; Rizvi SS J Liposome Res; 2016 Dec; 26(4):261-8. PubMed ID: 26585564 [TBL] [Abstract][Full Text] [Related]
17. Characteristics of niosomes prepared by supercritical carbon dioxide (scCO2) fluid. Manosroi A; Chutoprapat R; Abe M; Manosroi J Int J Pharm; 2008 Mar; 352(1-2):248-55. PubMed ID: 18036754 [TBL] [Abstract][Full Text] [Related]
18. A Novel Long-circulating DOX Liposome: Formulation and Pharmacokinetics Studies. Xiao P; Zhao J; Huang Y; Jin R; Tang Z; Wang P; Song X; Zhu H; Yang Z; Yu N Pharm Nanotechnol; 2020; 8(5):391-398. PubMed ID: 32787769 [TBL] [Abstract][Full Text] [Related]
19. Solidification of liposomes by freeze-drying: the importance of incorporating gelatin as interior support on enhanced physical stability. Guan P; Lu Y; Qi J; Niu M; Lian R; Wu W Int J Pharm; 2015 Jan; 478(2):655-64. PubMed ID: 25510601 [TBL] [Abstract][Full Text] [Related]
20. An innovative one step green supercritical CO Penoy N; Delma KL; Tonakpon HA; Grignard B; Evrard B; Piel G Int J Pharm; 2022 Nov; 627():122212. PubMed ID: 36150416 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]