BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 23378760)

  • 1. The combined use of paclitaxel-loaded nanoparticles with a low-molecular-weight copolymer inhibitor of P-glycoprotein to overcome drug resistance.
    Wan CP; Letchford K; Jackson JK; Burt HM
    Int J Nanomedicine; 2013; 8():379-91. PubMed ID: 23378760
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mixed molecular weight copolymer nanoparticles for the treatment of drug-resistant tumors: formulation development and cytotoxicity.
    Wan CPL; Letchford K; Leung D; Jackson JK; Burt HM
    J Pharm Sci; 2014 Dec; 103(12):3966-3976. PubMed ID: 25318668
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Copolymer micelles and nanospheres with different in vitro stability demonstrate similar paclitaxel pharmacokinetics.
    Letchford K; Burt HM
    Mol Pharm; 2012 Feb; 9(2):248-60. PubMed ID: 22204437
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro human plasma distribution of nanoparticulate paclitaxel is dependent on the physicochemical properties of poly(ethylene glycol)-block-poly(caprolactone) nanoparticles.
    Letchford K; Liggins R; Wasan KM; Burt H
    Eur J Pharm Biopharm; 2009 Feb; 71(2):196-206. PubMed ID: 18762253
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The use of ultrasound to increase the uptake and cytotoxicity of dual taxane and P-glycoprotein inhibitor loaded, solid core nanoparticles in drug resistant cells.
    Jackson J; Leung D; Burt H
    Ultrasonics; 2020 Feb; 101():106033. PubMed ID: 31561207
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reversal of multidrug resistance by methoxypolyethylene glycol-block-polycaprolactone diblock copolymers through the inhibition of P-glycoprotein function.
    Elamanchili P; McEachern C; Burt H
    J Pharm Sci; 2009 Mar; 98(3):945-58. PubMed ID: 18623213
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PEG-PE-based micelles co-loaded with paclitaxel and cyclosporine A or loaded with paclitaxel and targeted by anticancer antibody overcome drug resistance in cancer cells.
    Sarisozen C; Vural I; Levchenko T; Hincal AA; Torchilin VP
    Drug Deliv; 2012 May; 19(4):169-76. PubMed ID: 22506922
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long-circulating PEG-PE micelles co-loaded with paclitaxel and elacridar (GG918) overcome multidrug resistance.
    Sarisozen C; Vural I; Levchenko T; Hincal AA; Torchilin VP
    Drug Deliv; 2012 Nov; 19(8):363-70. PubMed ID: 23030458
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Folate-modified lipid-polymer hybrid nanoparticles for targeted paclitaxel delivery.
    Zhang L; Zhu D; Dong X; Sun H; Song C; Wang C; Kong D
    Int J Nanomedicine; 2015; 10():2101-14. PubMed ID: 25844039
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The uptake of paclitaxel and docetaxel into ex vivo porcine bladder tissue from polymeric micelle formulations.
    Tsallas A; Jackson J; Burt H
    Cancer Chemother Pharmacol; 2011 Aug; 68(2):431-44. PubMed ID: 21069339
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Taxol-loaded block copolymer nanospheres composed of methoxy poly(ethylene glycol) and poly(epsilon-caprolactone) as novel anticancer drug carriers.
    Kim SY; Lee YM
    Biomaterials; 2001 Jul; 22(13):1697-704. PubMed ID: 11396872
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oral delivery of paclitaxel by polymeric micelles: A comparison of different block length on uptake, permeability and oral bioavailability.
    Sze LP; Li HY; Lai KLA; Chow SF; Li Q; KennethTo KW; Lam TNT; Lee WYT
    Colloids Surf B Biointerfaces; 2019 Dec; 184():110554. PubMed ID: 31627103
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced antiproliferative and apoptosis effect of paclitaxel-loaded polymeric micelles against non-small cell lung cancers.
    Zhang XY; Zhang YD
    Tumour Biol; 2015 Jul; 36(7):4949-59. PubMed ID: 25702089
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Paclitaxel-loaded polymeric micelles based on poly(ɛ-caprolactone)-poly(ethylene glycol)-poly(ɛ-caprolactone) triblock copolymers: in vitro and in vivo evaluation.
    Zhang L; He Y; Ma G; Song C; Sun H
    Nanomedicine; 2012 Aug; 8(6):925-34. PubMed ID: 22101107
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced cellular accumulation of a P-glycoprotein substrate, rhodamine-123, by Caco-2 cells using low molecular weight methoxypolyethylene glycol-block-polycaprolactone diblock copolymers.
    Zastre J; Jackson J; Bajwa M; Liggins R; Iqbal F; Burt H
    Eur J Pharm Biopharm; 2002 Nov; 54(3):299-309. PubMed ID: 12445560
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Galactose-decorated cross-linked biodegradable poly(ethylene glycol)-b-poly(ε-caprolactone) block copolymer micelles for enhanced hepatoma-targeting delivery of paclitaxel.
    Yang R; Meng F; Ma S; Huang F; Liu H; Zhong Z
    Biomacromolecules; 2011 Aug; 12(8):3047-55. PubMed ID: 21726090
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Paclitaxel-Loaded TPGS-b-PCL Nanoparticles: In Vitro Cytotoxicity and Cellular Uptake in MCF-7 and MDA-MB-231 Cells versus mPEG-b-PCL Nanoparticles and Abraxane®.
    Bernabeu E; Gonzalez L; Legaspi MJ; Moretton MA; Chiappetta DA
    J Nanosci Nanotechnol; 2016 Jan; 16(1):160-70. PubMed ID: 27398441
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Paclitaxel-loaded poly(glycolide-co-ε-caprolactone)-b-D-α-tocopheryl polyethylene glycol 2000 succinate nanoparticles for lung cancer therapy.
    Zhao T; Chen H; Dong Y; Zhang J; Huang H; Zhu J; Zhang W
    Int J Nanomedicine; 2013; 8():1947-57. PubMed ID: 23696703
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation on vitamin e succinate based intelligent hyaluronic acid micelles for overcoming drug resistance and enhancing anticancer efficacy.
    Hou L; Tian C; Chen D; Yuan Y; Yan Y; Huang Q; Zhang H; Zhang Z
    Eur J Pharm Sci; 2019 Dec; 140():105071. PubMed ID: 31525433
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Poly(ethylene glycol)-block-poly(ε-caprolactone) micelles for combination drug delivery: evaluation of paclitaxel, cyclopamine and gossypol in intraperitoneal xenograft models of ovarian cancer.
    Cho H; Lai TC; Kwon GS
    J Control Release; 2013 Feb; 166(1):1-9. PubMed ID: 23246471
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.