These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 23378913)

  • 1. Photoluminescence of a microcavity quantum dot system in the quantum strong-coupling regime.
    Ishida N; Byrnes T; Nori F; Yamamoto Y
    Sci Rep; 2013; 3():1180. PubMed ID: 23378913
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Up on the Jaynes-Cummings ladder of a quantum-dot/microcavity system.
    Kasprzak J; Reitzenstein S; Muljarov EA; Kistner C; Schneider C; Strauss M; Höfling S; Forchel A; Langbein W
    Nat Mater; 2010 Apr; 9(4):304-8. PubMed ID: 20208523
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The single quantum dot-laser: lasing and strong coupling in the high-excitation regime.
    Gies C; Florian M; Gartner P; Jahnke F
    Opt Express; 2011 Jul; 19(15):14370-88. PubMed ID: 21934800
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Linear and nonlinear optical spectroscopy of a strongly coupled microdisk-quantum dot system.
    Srinivasan K; Painter O
    Nature; 2007 Dec; 450(7171):862-5. PubMed ID: 18064009
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A gated quantum dot strongly coupled to an optical microcavity.
    Najer D; Söllner I; Sekatski P; Dolique V; Löbl MC; Riedel D; Schott R; Starosielec S; Valentin SR; Wieck AD; Sangouard N; Ludwig A; Warburton RJ
    Nature; 2019 Nov; 575(7784):622-627. PubMed ID: 31634901
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microcavity controlled coupling of excitonic qubits.
    Albert F; Sivalertporn K; Kasprzak J; Strauß M; Schneider C; Höfling S; Kamp M; Forchel A; Reitzenstein S; Muljarov EA; Langbein W
    Nat Commun; 2013; 4():1747. PubMed ID: 23612288
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strong coupling in a single quantum dot-semiconductor microcavity system.
    Reithmaier JP; Sek G; Löffler A; Hofmann C; Kuhn S; Reitzenstein S; Keldysh LV; Kulakovskii VD; Reinecke TL; Forchel A
    Nature; 2004 Nov; 432(7014):197-200. PubMed ID: 15538362
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlling cavity reflectivity with a single quantum dot.
    Englund D; Faraon A; Fushman I; Stoltz N; Petroff P; Vucković J
    Nature; 2007 Dec; 450(7171):857-61. PubMed ID: 18064008
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum nature of a strongly coupled single quantum dot-cavity system.
    Hennessy K; Badolato A; Winger M; Gerace D; Atatüre M; Gulde S; Fält S; Hu EL; Imamoğlu A
    Nature; 2007 Feb; 445(7130):896-9. PubMed ID: 17259971
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime.
    Press D; Götzinger S; Reitzenstein S; Hofmann C; Löffler A; Kamp M; Forchel A; Yamamoto Y
    Phys Rev Lett; 2007 Mar; 98(11):117402. PubMed ID: 17501092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Climbing the Jaynes-Cummings ladder and observing its nonlinearity in a cavity QED system.
    Fink JM; Göppl M; Baur M; Bianchetti R; Leek PJ; Blais A; Wallraff A
    Nature; 2008 Jul; 454(7202):315-8. PubMed ID: 18633413
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonequilibrium dynamics of the Jaynes-Cummings dimer.
    Vivek G; Mondal D; Sinha S
    Phys Rev E; 2023 Nov; 108(5-1):054116. PubMed ID: 38115501
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity.
    Peter E; Senellart P; Martrou D; Lemaître A; Hours J; Gérard JM; Bloch J
    Phys Rev Lett; 2005 Aug; 95(6):067401. PubMed ID: 16090987
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theory of phonon-modified quantum dot photoluminescence intensity in structured photonic reservoirs.
    Roy-Choudhury K; Hughes S
    Opt Lett; 2015 Apr; 40(8):1838-41. PubMed ID: 25872087
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmonic Cavities and Individual Quantum Emitters in the Strong Coupling Limit.
    Bitton O; Haran G
    Acc Chem Res; 2022 Jun; 55(12):1659-1668. PubMed ID: 35649040
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coherent perfect absorption in Tavis-Cummings models.
    Wang Z; Khatiwada P; Wang D; Mirza IM
    Opt Express; 2022 Mar; 30(6):9360-9379. PubMed ID: 35299366
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scalable photonic quantum computing assisted by quantum-dot spin in double-sided optical microcavity.
    Wei HR; Deng FG
    Opt Express; 2013 Jul; 21(15):17671-85. PubMed ID: 23938640
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A classical simulation of nonlinear Jaynes-Cummings and Rabi models in photonic lattices.
    Rodríguez-Lara BM; Soto-Eguibar F; Cárdenas AZ; Moya-Cessa HM
    Opt Express; 2013 May; 21(10):12888-98. PubMed ID: 23736508
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Externally mode-matched cavity quantum electrodynamics with charge-tunable quantum dots.
    Rakher MT; Stoltz NG; Coldren LA; Petroff PM; Bouwmeester D
    Phys Rev Lett; 2009 Mar; 102(9):097403. PubMed ID: 19392565
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correlated spectrum of distant semiconductor qubits coupled by microwave photons.
    Wang B; Lin T; Li H; Gu S; Chen M; Guo G; Jiang H; Hu X; Cao G; Guo G
    Sci Bull (Beijing); 2021 Feb; 66(4):332-338. PubMed ID: 36654412
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.