These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 23379484)

  • 1. EphB2 signaling regulates lesion-induced axon sprouting but not critical period length in the postnatal auditory brainstem.
    Nakamura PA; Cramer KS
    Neural Dev; 2013 Feb; 8():2. PubMed ID: 23379484
    [TBL] [Abstract][Full Text] [Related]  

  • 2. EphB signaling regulates target innervation in the developing and deafferented auditory brainstem.
    Nakamura PA; Hsieh CY; Cramer KS
    Dev Neurobiol; 2012 Sep; 72(9):1243-55. PubMed ID: 22021100
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ephrin-B reverse signaling is required for formation of strictly contralateral auditory brainstem pathways.
    Hsieh CY; Nakamura PA; Luk SO; Miko IJ; Henkemeyer M; Cramer KS
    J Neurosci; 2010 Jul; 30(29):9840-9. PubMed ID: 20660266
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deletion of EphA4 enhances deafferentation-induced ipsilateral sprouting in auditory brainstem projections.
    Hsieh CY; Hong CT; Cramer KS
    J Comp Neurol; 2007 Oct; 504(5):508-18. PubMed ID: 17702003
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ephrin-A2 and ephrin-A5 guide contralateral targeting but not topographic mapping of ventral cochlear nucleus axons.
    Abdul-Latif ML; Salazar JA; Marshak S; Dinh ML; Cramer KS
    Neural Dev; 2015 Dec; 10():27. PubMed ID: 26666565
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deafferentation induces novel axonal projections in the auditory brainstem after hearing onset.
    Hsieh CY; Cramer KS
    J Comp Neurol; 2006 Aug; 497(4):589-99. PubMed ID: 16739167
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation and maturation of the calyx of Held.
    Nakamura PA; Cramer KS
    Hear Res; 2011 Jun; 276(1-2):70-8. PubMed ID: 21093567
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distribution of glial cells in the auditory brainstem: normal development and effects of unilateral lesion.
    Dinh ML; Koppel SJ; Korn MJ; Cramer KS
    Neuroscience; 2014 Oct; 278():237-52. PubMed ID: 25158674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of ectopic projections from the ventral cochlear nucleus to the superior olivary complex induced by neonatal ablation of the contralateral cochlea.
    Kitzes LM; Kageyama GH; Semple MN; Kil J
    J Comp Neurol; 1995 Mar; 353(3):341-63. PubMed ID: 7751435
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decreased temporal precision of auditory signaling in Kcna1-null mice: an electrophysiological study in vivo.
    Kopp-Scheinpflug C; Fuchs K; Lippe WR; Tempel BL; Rübsamen R
    J Neurosci; 2003 Oct; 23(27):9199-207. PubMed ID: 14534254
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Superior olivary contributions to auditory system plasticity: medial but not lateral olivocochlear neurons are the source of cochleotomy-induced GAP-43 expression in the ventral cochlear nucleus.
    Kraus KS; Illing RB
    J Comp Neurol; 2004 Jul; 475(3):374-90. PubMed ID: 15221952
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deficiency of neural recognition molecule NB-2 affects the development of glutamatergic auditory pathways from the ventral cochlear nucleus to the superior olivary complex in mouse.
    Toyoshima M; Sakurai K; Shimazaki K; Takeda Y; Shimoda Y; Watanabe K
    Dev Biol; 2009 Dec; 336(2):192-200. PubMed ID: 19818338
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of human auditory brainstem circuits by calcium-binding protein immunohistochemistry.
    Kulesza RJ
    Neuroscience; 2014 Jan; 258():318-31. PubMed ID: 24291726
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular guidance cues necessary for axon pathfinding from the ventral cochlear nucleus.
    Howell DM; Morgan WJ; Jarjour AA; Spirou GA; Berrebi AS; Kennedy TE; Mathers PH
    J Comp Neurol; 2007 Oct; 504(5):533-49. PubMed ID: 17701984
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Somatostatin and leu-enkephalin in the rat auditory brainstem during fetal and postnatal development.
    Kungel M; Friauf E
    Anat Embryol (Berl); 1995 May; 191(5):425-43. PubMed ID: 7625613
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Projections of physiologically characterized globular bushy cell axons from the cochlear nucleus of the cat.
    Smith PH; Joris PX; Carney LH; Yin TC
    J Comp Neurol; 1991 Feb; 304(3):387-407. PubMed ID: 2022755
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reconnecting neuronal networks in the auditory brainstem following unilateral deafening.
    Illing RB; Kraus KS; Meidinger MA
    Hear Res; 2005 Aug; 206(1-2):185-99. PubMed ID: 16081008
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Principal cells of the rat medial nucleus of the trapezoid body: an intracellular in vivo study of their physiology and morphology.
    Sommer I; Lingenhöhl K; Friauf E
    Exp Brain Res; 1993; 95(2):223-39. PubMed ID: 8224048
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of BMP Signaling for the Formation of Auditory Brainstem Nuclei and Large Auditory Relay Synapses.
    Kronander E; Clark C; Schneggenburger R
    Dev Neurobiol; 2019 Feb; 79(2):155-174. PubMed ID: 30548566
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A role for microglial cells in reshaping neuronal circuitry of the adult rat auditory brainstem after its sensory deafferentation.
    Janz P; Illing RB
    J Neurosci Res; 2014 Apr; 92(4):432-45. PubMed ID: 24446187
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.