BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

57 related articles for article (PubMed ID: 23379563)

  • 1. Effect of potential-dependent potassium uptake on calcium accumulation in rat brain mitochondria.
    Akopova OV; Kolchinskaya LI; Nosar VI; Bouryi VA; Mankovskaya IN; Sagach VF
    Biochemistry (Mosc); 2013 Jan; 78(1):80-90. PubMed ID: 23379563
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of potential-dependent potassium uptake on production of reactive oxygen species in rat brain mitochondria.
    Akopova OV; Kolchinskaya LI; Nosar VI; Bouryi VA; Mankovska IN; Sagach VF
    Biochemistry (Mosc); 2014 Jan; 79(1):44-53. PubMed ID: 24512663
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [The effect of potential-dependent potassium uptake on membrane potential in rat brain mitochondria].
    Akopova OV; Nosar' VI; Kolchinskaia LI; Man'kovskaia IN; Malysheva MK; Sagach VF
    Ukr Biokhim Zh (1999); 2013; 85(1):33-41. PubMed ID: 23534288
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [The role of mitochondria in NO-dependent regulation of Na+, K+ -ATP activity in the rat aorta].
    Akopova OV; Kotsiuruba AV; Kharlamova OM; Korkach IuP; Sahach VF
    Fiziol Zh (1994); 2010; 56(4):76-85. PubMed ID: 20968040
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct effects of diazoxide on mitochondria in pancreatic B-cells and on isolated liver mitochondria.
    Grimmsmann T; Rustenbeck I
    Br J Pharmacol; 1998 Mar; 123(5):781-8. PubMed ID: 9535004
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Na(+)-Ca2+ exchange activity in central nerve endings. I. Ionic conditions that discriminate 45Ca2+ uptake through the exchanger from that occurring through voltage-operated Ca2+ channels.
    Taglialatela M; Di Renzo G; Annunziato L
    Mol Pharmacol; 1990 Sep; 38(3):385-92. PubMed ID: 2169581
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calcium uptake in rat liver mitochondria accompanied by activation of ATP-dependent potassium channel.
    Akopova OV; Nosar VI; Mankovskaya IN; Sagach VF
    Biochemistry (Mosc); 2008 Oct; 73(10):1146-53. PubMed ID: 18991562
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The respiration of rat brain mitochondria purified by phase partition. Effects of K+, Mg2+ and Ca2+.
    Sánchez-Prieto J; López-Pérez MJ
    Rev Esp Fisiol; 1986 Dec; 42(4):427-34. PubMed ID: 3563071
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CCCP enhances catecholamine release from the perfused rat adrenal medulla.
    Lim DY; Park HG; Miwa S
    Auton Neurosci; 2006 Jul; 128(1-2):37-47. PubMed ID: 16461015
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ca2+ clearance mechanisms in neurohypophysial terminals of the rat.
    Sasaki N; Dayanithi G; Shibuya I
    Cell Calcium; 2005 Jan; 37(1):45-56. PubMed ID: 15541463
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Estimation of ATP-dependent K(+)-channel contribution to potential-dependent potassium uptake in the rat brain mitochondria].
    Akopova OV; Nosar' VI; Kolchinskaia LI; Man'kovskaia IN; Malysheva MK; Sagach VF
    Ukr Biochem J; 2014; 86(1):21-8. PubMed ID: 24834715
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Transmembrane Ca2+ exchange in depolarized rat myometrium mitochondria].
    Babich LH; Shlykov SH; Kandaurova NV; Kosterin SA
    Ukr Biokhim Zh (1999); 2011; 83(6):56-62. PubMed ID: 22364019
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Mechanisms of calcium transport in brain synaptosomes as affected by depolarization].
    Kravtsov GM; Pokudin NI; Gulak PV; Orlov SN
    Biokhimiia; 1983 Aug; 48(8):1249-55. PubMed ID: 6138103
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Effect of the membrane potential on the Mg2+,ATP-dependent transport of Ca2+ across smooth muscle sarcolemma].
    Babich LG; Fomin VP; Kosterin SA
    Biokhimiia; 1990 Oct; 55(10):1890-901. PubMed ID: 2078629
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Acidosis inhibits oxidative phosphorylation in intrasynaptosomal mitochondria by releasing calcium from cytoplasmic store].
    Aksentsev SL; Levko AV; Fedorovich SV; Orlov SN; Konev SV
    Biofizika; 1998; 43(2):315-8. PubMed ID: 9591106
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intramitochondrial K+ as activator of carboxyatractyloside-induced Ca2+ release.
    Chávez E; Moreno-Sánchez R; Zazueta C; Reyes-Vivas H; Arteaga D
    Biochim Biophys Acta; 1991 Dec; 1070(2):461-6. PubMed ID: 1764458
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of Ca2+ transport in brain mitochondria. I. The mechanism of spermine enhancement of Ca2+ uptake and retention.
    Rottenberg H; Marbach M
    Biochim Biophys Acta; 1990 Mar; 1016(1):77-86. PubMed ID: 2310743
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of depolarizing concentrations of potassium on calcium uptake and metabolism in rat liver.
    Taylor WM; van de Pol E; van Helden DF; Reinhart PH; Bygrave FL
    FEBS Lett; 1985 Apr; 183(1):70-4. PubMed ID: 3979569
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of aluminum and calcium on acetyl-CoA metabolism in rat brain mitochondria.
    Szutowicz A; Bielarczyk H; Kisielevski Y; Jankowska A; Madziar B; Tomaszewicz M
    J Neurochem; 1998 Dec; 71(6):2447-53. PubMed ID: 9832143
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Allosteric activation of brain mitochondrial Ca2+ uptake by spermine and by Ca2+: brain regional differences.
    Jensen JR; Lynch G; Baudry M
    J Neurochem; 1989 Oct; 53(4):1182-7. PubMed ID: 2769260
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.