BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 23379664)

  • 41. Forcefield_NCAA: ab initio charge parameters to aid in the discovery and design of therapeutic proteins and peptides with unnatural amino acids and their application to complement inhibitors of the compstatin family.
    Khoury GA; Smadbeck J; Tamamis P; Vandris AC; Kieslich CA; Floudas CA
    ACS Synth Biol; 2014 Dec; 3(12):855-69. PubMed ID: 24932669
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Updating atomic charge parameters of aliphatic amino acids: a quest to improve the performance of molecular modeling via sequential molecular dynamics and DFT-GIAO-NMR calculations.
    Colherinhas G
    Phys Chem Chem Phys; 2021 Apr; 23(14):8413-8425. PubMed ID: 33876005
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Computer simulations of aqua metal ions for accurate reproduction of hydration free energies and structures.
    Li X; Tu Y; Tian H; Agren H
    J Chem Phys; 2010 Mar; 132(10):104505. PubMed ID: 20232969
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Polarizable Force Field for Molecular Ions Based on the Classical Drude Oscillator.
    Lin FY; Lopes PEM; Harder E; Roux B; MacKerell AD
    J Chem Inf Model; 2018 May; 58(5):993-1004. PubMed ID: 29624370
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Accuracy of free energies of hydration using CM1 and CM3 atomic charges.
    Udier-Blagović M; Morales De Tirado P; Pearlman SA; Jorgensen WL
    J Comput Chem; 2004 Aug; 25(11):1322-32. PubMed ID: 15185325
    [TBL] [Abstract][Full Text] [Related]  

  • 46. SAMPL6 Octanol-water partition coefficients from alchemical free energy calculations with MBIS atomic charges.
    Riquelme M; Vöhringer-Martinez E
    J Comput Aided Mol Des; 2020 Apr; 34(4):327-334. PubMed ID: 31960251
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Optimizing solute-water van der Waals interactions to reproduce solvation free energies.
    Nerenberg PS; Jo B; So C; Tripathy A; Head-Gordon T
    J Phys Chem B; 2012 Apr; 116(15):4524-34. PubMed ID: 22443635
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Lennard-Jones parameters for the combined QM/MM method using the B3LYP/6-31G*/AMBER potential.
    Freindorf M; Shao Y; Furlani TR; Kong J
    J Comput Chem; 2005 Sep; 26(12):1270-8. PubMed ID: 15965971
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Optimized Lennard-Jones Parameters for Druglike Small Molecules.
    Boulanger E; Huang L; Rupakheti C; MacKerell AD; Roux B
    J Chem Theory Comput; 2018 Jun; 14(6):3121-3131. PubMed ID: 29694035
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Hydration free energies of amino acids: why side chain analog data are not enough.
    König G; Boresch S
    J Phys Chem B; 2009 Jul; 113(26):8967-74. PubMed ID: 19507836
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Prediction of octanol-water partition coefficients for the SAMPL6-[Formula: see text] molecules using molecular dynamics simulations with OPLS-AA, AMBER and CHARMM force fields.
    Fan S; Iorga BI; Beckstein O
    J Comput Aided Mol Des; 2020 May; 34(5):543-560. PubMed ID: 31960254
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Additive CHARMM36 Force Field for Nonstandard Amino Acids.
    Croitoru A; Park SJ; Kumar A; Lee J; Im W; MacKerell AD; Aleksandrov A
    J Chem Theory Comput; 2021 Jun; 17(6):3554-3570. PubMed ID: 34009984
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Global Optimization of the Lennard-Jones Parameters for the Drude Polarizable Force Field.
    Rupakheti CR; MacKerell AD; Roux B
    J Chem Theory Comput; 2021 Nov; 17(11):7085-7095. PubMed ID: 34609863
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The hydration structure of methylthiolate from QM/MM molecular dynamics.
    Awoonor-Williams E; Rowley CN
    J Chem Phys; 2018 Jul; 149(4):045103. PubMed ID: 30068187
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Development, Validation, and Applications of Nonbonded Interaction Parameters between Coarse-Grained Amino Acid and Water Models.
    Mohammadi E; Joshi SY; Deshmukh SA
    Biomacromolecules; 2023 Sep; 24(9):4078-4092. PubMed ID: 37603467
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Machine Learning of Partial Charges Derived from High-Quality Quantum-Mechanical Calculations.
    Bleiziffer P; Schaller K; Riniker S
    J Chem Inf Model; 2018 Mar; 58(3):579-590. PubMed ID: 29461814
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Comparative Assessment of Computational Methods for Free Energy Calculations of Ionic Hydration.
    Zhang H; Jiang Y; Yan H; Cui Z; Yin C
    J Chem Inf Model; 2017 Nov; 57(11):2763-2775. PubMed ID: 29039666
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Solvation free energy of amino acids and side-chain analogues.
    Chang J; Lenhoff AM; Sandler SI
    J Phys Chem B; 2007 Mar; 111(8):2098-106. PubMed ID: 17269814
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Simple physics-based analytical formulas for the potentials of mean force of the interaction of amino-acid side chains in water. V. Like-charged side chains.
    Makowski M; Liwo A; Sobolewski E; Scheraga HA
    J Phys Chem B; 2011 May; 115(19):6119-29. PubMed ID: 21500792
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A Comparison of QM/MM Simulations with and without the Drude Oscillator Model Based on Hydration Free Energies of Simple Solutes.
    König G; Pickard FC; Huang J; Thiel W; MacKerell AD; Brooks BR; York DM
    Molecules; 2018 Oct; 23(10):. PubMed ID: 30347691
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.