These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 23379942)

  • 81. A new method for assessment of sediment-associated contamination risks using multivariate statistical approach.
    Benson NU; Adedapo AE; Fred-Ahmadu OH; Williams AB; Udosen ED; Ayejuyo OO; Olajire AA
    MethodsX; 2018; 5():268-276. PubMed ID: 30038896
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Facilitating maintenance of stormwater ponds: comparison of analytical methods for determination of metal pollution.
    Gavrić S; Flanagan K; Österlund H; Blecken GT; Viklander M
    Environ Sci Pollut Res Int; 2022 Oct; 29(49):74877-74893. PubMed ID: 35650338
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Assessments of Metals in Coastal Environments: State of Art.
    Marcelo-Silva J; Christofoletti RA
    Arch Environ Contam Toxicol; 2019 Aug; 77(2):162-170. PubMed ID: 31147746
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Microbial community activity in response to multiple contaminant exposure: a feasible tool for sediment quality assessment.
    Nascimento JR; Silveira AEF; Bidone ED; Sabadini-Santos E
    Environ Monit Assess; 2019 May; 191(6):392. PubMed ID: 31123827
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Potential sensitivity of mires to drought, acidification and mobilisation of heavy metals: the sediment s/(Ca + Mg) ratio as diagnostic tool.
    Lucassen EC; Smolders AJ; Roelofs JG
    Environ Pollut; 2002; 120(3):635-46. PubMed ID: 12442787
    [TBL] [Abstract][Full Text] [Related]  

  • 86. River sediment quality assessment using sediment quality indices for the Sydney basin, Australia affected by coal and coal seam gas mining.
    Ali AE; Strezov V; Davies PJ; Wright I
    Sci Total Environ; 2018 Mar; 616-617():695-702. PubMed ID: 29111250
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Mineral magnetic measurements as a pollution proxy for canal sediments (Birmingham Canal Navigation Main Line).
    Crosby CJ; Booth CA; Appasamy D; Fullen MA; Farr K
    Environ Technol; 2014; 35(1-4):432-45. PubMed ID: 24600884
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Future environmental challenges of the urban protected area Great War Island (Belgrade, Serbia) based on valuation of the pollution status and ecosystem services.
    Kašanin-Grubin M; Štrbac S; Antonijević S; Djogo Mračević S; Randjelović D; Orlić J; Šajnović A
    J Environ Manage; 2019 Dec; 251():109574. PubMed ID: 31574373
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Environmental Quality Assessment of Bizerte Lagoon (Tunisia) Using Living Foraminifera Assemblages and a Multiproxy Approach.
    Alves Martins MV; Zaaboub N; Aleya L; Frontalini F; Pereira E; Miranda P; Mane M; Rocha F; Laut L; El Bour M
    PLoS One; 2015; 10(9):e0137250. PubMed ID: 26372655
    [TBL] [Abstract][Full Text] [Related]  

  • 90. SEDIMENT BENCHMARKS BASED ON ACID-VOLATILE SULFIDE AND SIMULTANEOUSLY EXTRACTED METALS-WHEN IS ORGANIC CARBON NORMALIZATION MEANINGFUL?
    Toll J; DeForest D; Santore R; Judd N
    Integr Environ Assess Manag; 2020 Jan; 16(1):152. PubMed ID: 31876127
    [No Abstract]   [Full Text] [Related]  

  • 91. Chemical sequential extraction for metal partitioning in environmental solid samples.
    Filgueiras AV; Lavilla I; Bendicho C
    J Environ Monit; 2002 Dec; 4(6):823-57. PubMed ID: 12509036
    [TBL] [Abstract][Full Text] [Related]  

  • 92. An assessment of the potential use of the nematode to copepod ratio in the monitoring of metals pollution. The Chañaral case.
    Lee MR; Correa JA; Castilla JC
    Mar Pollut Bull; 2001 Aug; 42(8):696-701. PubMed ID: 11525287
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Assessment of metal pollution based on multivariate statistical modeling of 'hot spot' sediments from the Black Sea.
    Simeonov V; Massart DL; Andreev G; Tsakovski S
    Chemosphere; 2000 Nov; 41(9):1411-7. PubMed ID: 11057578
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Heavy metal accumulation and transport through detention ponds receiving highway runoff.
    Yousef YA; Hvitved-Jacobsen T; Harper HH; Lin LY
    Sci Total Environ; 1990 Apr; 93():433-40. PubMed ID: 2360026
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Heavy metal pollution in bottom sediment, Dubai, United Arab Emirates.
    El-Sammak A
    Bull Environ Contam Toxicol; 2001 Aug; 67(2):295-302. PubMed ID: 11429690
    [No Abstract]   [Full Text] [Related]  

  • 96. Deriving field-based sediment quality guidelines from the relationship between species density and contaminant level using a novel nonparametric empirical Bayesian approach.
    Lui GC; Li WK; Bjørgesæter A; Leung KM
    Environ Sci Pollut Res Int; 2014 Jan; 21(1):177-92. PubMed ID: 23771407
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Detection of heavy metals and VOCs in streambed sediment indicates anthropogenic impact on intermittent streams of the U.S. Virgin Islands.
    Lancellotti BV; Hensley DA; Stryker R
    Sci Rep; 2023 Oct; 13(1):17238. PubMed ID: 37821549
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Determination of sediment metal background concentrations and enrichment in marine environments - A critical review.
    Birch GF
    Sci Total Environ; 2017 Feb; 580():813-831. PubMed ID: 27986324
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Ecotoxicological research and related legislation in Serbia.
    Teodorović I
    Environ Sci Pollut Res Int; 2009 Aug; 16 Suppl 1():S123-9. PubMed ID: 19404696
    [TBL] [Abstract][Full Text] [Related]  

  • 100. A review and critical assessment of sedimentary metal indices used in determining the magnitude of anthropogenic change in coastal environments.
    Birch GF
    Sci Total Environ; 2023 Jan; 854():158129. PubMed ID: 36113803
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.