These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 23380596)

  • 21. Autonomous learning in humanoid robotics through mental imagery.
    Di Nuovo AG; Marocco D; Di Nuovo S; Cangelosi A
    Neural Netw; 2013 May; 41():147-55. PubMed ID: 23122490
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A rehabilitation robot with force-position hybrid fuzzy controller: hybrid fuzzy control of rehabilitation robot.
    Ju MS; Lin CC; Lin DH; Hwang IS; Chen SM
    IEEE Trans Neural Syst Rehabil Eng; 2005 Sep; 13(3):349-58. PubMed ID: 16200758
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reinforcement learning for a biped robot based on a CPG-actor-critic method.
    Nakamura Y; Mori T; Sato MA; Ishii S
    Neural Netw; 2007 Aug; 20(6):723-35. PubMed ID: 17412559
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Exploiting upper-limb functional principal components for human-like motion generation of anthropomorphic robots.
    Averta G; Della Santina C; Valenza G; Bicchi A; Bianchi M
    J Neuroeng Rehabil; 2020 May; 17(1):63. PubMed ID: 32404174
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Learning to recognize objects on the fly: a neurally based dynamic field approach.
    Faubel C; Schöner G
    Neural Netw; 2008 May; 21(4):562-76. PubMed ID: 18501555
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dynamical movement primitives: learning attractor models for motor behaviors.
    Ijspeert AJ; Nakanishi J; Hoffmann H; Pastor P; Schaal S
    Neural Comput; 2013 Feb; 25(2):328-73. PubMed ID: 23148415
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Physiological and subjective evaluation of a human-robot object hand-over task.
    Dehais F; Sisbot EA; Alami R; Causse M
    Appl Ergon; 2011 Nov; 42(6):785-91. PubMed ID: 21296335
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Human-Like Behavior Generation Based on Head-Arms Model for Robot Tracking External Targets and Body Parts.
    Zhang Z; Beck A; Magnenat-Thalmann N
    IEEE Trans Cybern; 2015 Aug; 45(8):1390-400. PubMed ID: 25252290
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Motor learning by observing.
    Mattar AA; Gribble PL
    Neuron; 2005 Apr; 46(1):153-60. PubMed ID: 15820701
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dynamical simulation priors for human motion tracking.
    Vondrak M; Sigal L; Jenkins OC
    IEEE Trans Pattern Anal Mach Intell; 2013 Jan; 35(1):52-65. PubMed ID: 22392709
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Neural activation during imitation of movements presented from four different perspectives: a functional magnetic resonance imaging study.
    Watanabe R; Watanabe S; Kuruma H; Murakami Y; Seno A; Matsuda T
    Neurosci Lett; 2011 Oct; 503(2):100-4. PubMed ID: 21871533
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Correspondence mapping induced state and action metrics for robotic imitation.
    Alissandrakis A; Nehaniv CL; Dautenhahn K
    IEEE Trans Syst Man Cybern B Cybern; 2007 Apr; 37(2):299-307. PubMed ID: 17416158
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Temporal and amplitude generalization in motor learning.
    Goodbody SJ; Wolpert DM
    J Neurophysiol; 1998 Apr; 79(4):1825-38. PubMed ID: 9535951
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cognitive mechanisms of visuomotor transformation in movement imitation: examining predictions based on models of apraxia and motor control.
    Gravenhorst RM; Walter CB
    Brain Cogn; 2009 Nov; 71(2):118-28. PubMed ID: 19473740
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Experience-based priming of body parts: a study of action imitation.
    Gillmeister H; Catmur C; Liepelt R; Brass M; Heyes C
    Brain Res; 2008 Jun; 1217():157-70. PubMed ID: 18502404
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Adaptive fuzzy neural network control design via a T-S fuzzy model for a robot manipulator including actuator dynamics.
    Wai RJ; Yang ZW
    IEEE Trans Syst Man Cybern B Cybern; 2008 Oct; 38(5):1326-46. PubMed ID: 18784015
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The dynamic neural field approach to cognitive robotics.
    Erlhagen W; Bicho E
    J Neural Eng; 2006 Sep; 3(3):R36-54. PubMed ID: 16921201
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An Improvement of Robot Stiffness-Adaptive Skill Primitive Generalization Using the Surface Electromyography in Human-Robot Collaboration.
    Guan Y; Wang N; Yang C
    Front Neurosci; 2021; 15():694914. PubMed ID: 34594181
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An assessment of robot-assisted bimanual movements on upper limb motor coordination following stroke.
    Lewis GN; Perreault EJ
    IEEE Trans Neural Syst Rehabil Eng; 2009 Dec; 17(6):595-604. PubMed ID: 19666342
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Learning Trajectories for Robot Programing by Demonstration Using a Coordinated Mixture of Factor Analyzers.
    Field M; Stirling D; Pan Z; Naghdy F
    IEEE Trans Cybern; 2016 Mar; 46(3):706-17. PubMed ID: 25826815
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.