These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 23380838)

  • 21. Track structure, radiation quality and initial radiobiological events: considerations based on the PARTRAC code experience.
    Alloni D; Campa A; Friedland W; Mariotti L; Ottolenghi A
    Int J Radiat Biol; 2012 Jan; 88(1-2):77-86. PubMed ID: 21957961
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Monte Carlo mitochondrial dosimetry and microdosimetry of 131I.
    Carrillo-Cázares TA; Torres-García E
    Radiat Prot Dosimetry; 2013; 153(4):411-6. PubMed ID: 22826354
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Generation and modelling of megavoltage photon beams for contrast-enhanced radiation therapy.
    Robar JL
    Phys Med Biol; 2006 Nov; 51(21):5487-504. PubMed ID: 17047265
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparison of nanodosimetric parameters of track structure calculated by the Monte Carlo codes Geant4-DNA and PTra.
    Lazarakis P; Bug MU; Gargioni E; Guatelli S; Rabus H; Rosenfeld AB
    Phys Med Biol; 2012 Mar; 57(5):1231-50. PubMed ID: 22330641
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Relative biological damage and electron fluence in and out of a 6 MV photon field.
    Syme A; Kirkby C; Mirzayans R; MacKenzie M; Field C; Fallone BG
    Phys Med Biol; 2009 Nov; 54(21):6623-33. PubMed ID: 19826205
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A comparison of X-ray and proton beam low energy secondary electron track structures using the low energy models of Geant4.
    McNamara AL; Guatelli S; Prokopovich DA; Reinhard MI; Rosenfeld AB
    Int J Radiat Biol; 2012 Jan; 88(1-2):164-70. PubMed ID: 22040102
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modeling dose deposition and DNA damage due to low-energy β(-) emitters.
    Alloni D; Cutaia C; Mariotti L; Friedland W; Ottolenghi A
    Radiat Res; 2014 Sep; 182(3):322-30. PubMed ID: 25117624
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparison between a conventional treatment energy and 50 MV photons for the treatment of lung tumours.
    Blomquist M; Li J; Ma CM; Zackrisson B; Karlsson M
    Phys Med Biol; 2002 Mar; 47(6):889-97. PubMed ID: 11936176
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The COOLER Code: A Novel Analytical Approach to Calculate Subcellular Energy Deposition by Internal Electron Emitters.
    Siragusa M; Baiocco G; Fredericia PM; Friedland W; Groesser T; Ottolenghi A; Jensen M
    Radiat Res; 2017 Aug; 188(2):204-220. PubMed ID: 28621586
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Beam energy considerations for gold nano-particle enhanced radiation treatment.
    Van den Heuvel F; Locquet JP; Nuyts S
    Phys Med Biol; 2010 Aug; 55(16):4509-20. PubMed ID: 20668345
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Monte Carlo single-cell dosimetry of Auger-electron emitting radionuclides.
    Bousis C; Emfietzoglou D; Hadjidoukas P; Nikjoo H
    Phys Med Biol; 2010 May; 55(9):2555-72. PubMed ID: 20393237
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Monte Carlo feasibility study of orthogonal bremsstrahlung beams for improved radiation therapy imaging.
    Jabbari K; Sarfehnia A; Podgorsak EB; Seuntjens JP
    Phys Med Biol; 2007 Feb; 52(4):1171-84. PubMed ID: 17264378
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Simulation of electron-beam irradiation of skin tissue model.
    Miller JH; Suleiman A; Chrisler WB; Sowa MB
    Radiat Res; 2011 Jan; 175(1):113-8. PubMed ID: 21175353
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dosimetry on sub-cellular level for intracellular incorporated auger-electron-emitting radionuclides: a comparison of Monte Carlo simulations and analytic calculations.
    Bousis C
    Radiat Prot Dosimetry; 2011 Jan; 143(1):33-41. PubMed ID: 20959340
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Monte-Carlo dosimetry on a realistic cell monolayer geometry exposed to alpha particles.
    Barberet P; Vianna F; Karamitros M; Brun T; Gordillo N; Moretto P; Incerti S; Seznec H
    Phys Med Biol; 2012 Apr; 57(8):2189-207. PubMed ID: 22456322
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Monte Carlo simulation and analysis of proton energy-deposition patterns in the Bragg peak.
    González-Muñoz G; Tilly N; Fernández-Varea JM; Ahnesjö A
    Phys Med Biol; 2008 Jun; 53(11):2857-75. PubMed ID: 18460751
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dose conversion coefficients for monoenergetic electrons incident on a realistic human eye model with different lens cell populations.
    Nogueira P; Zankl M; Schlattl H; Vaz P
    Phys Med Biol; 2011 Nov; 56(21):6919-34. PubMed ID: 21983644
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Monte Carlo study of electron spectra and dose from backscattered radiation in the vicinity of media interfaces for monoenergetic photons of 50-1250 keV.
    Verhaegen F; Seuntjens J
    Radiat Res; 1995 Sep; 143(3):334-42. PubMed ID: 7652173
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Are all photon radiations similar in large absorbers?--a comparison of electron spectra.
    Kellerer AM; Roos H
    Radiat Prot Dosimetry; 2005; 113(3):245-50. PubMed ID: 15695239
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhancement of radiation dose to the nucleus by vesicular internalization of iodine-125-labeled A33 monoclonal antibody.
    Daghighian F; Barendswaard E; Welt S; Humm J; Scott A; Willingham MC; McGuffie E; Old LJ; Larson SM
    J Nucl Med; 1996 Jun; 37(6):1052-7. PubMed ID: 8683300
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.