These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

341 related articles for article (PubMed ID: 23381093)

  • 21. Free-standing Ag/C coaxial hybrid electrodes as anodes for Li-ion batteries.
    Fu L; Tang K; Chen CC; Liu L; Guo X; Yu Y; Maier J
    Nanoscale; 2013 Dec; 5(23):11568-71. PubMed ID: 24114078
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Copper-doped dual phase Li4Ti5O12-TiO2 nanosheets as high-rate and long cycle life anodes for high-power lithium-ion batteries.
    Chen C; Huang Y; An C; Zhang H; Wang Y; Jiao L; Yuan H
    ChemSusChem; 2015 Jan; 8(1):114-22. PubMed ID: 25425492
    [TBL] [Abstract][Full Text] [Related]  

  • 23. One-pot synthesis of hematite@graphene core@shell nanostructures for superior lithium storage.
    Chen D; Quan H; Liang J; Guo L
    Nanoscale; 2013 Oct; 5(20):9684-9. PubMed ID: 23999932
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Crystallinity-controlled titanium oxide-carbon nanocomposites with enhanced lithium storage performance.
    Zhou Y; Lee J; Lee CW; Wu M; Yoon S
    ChemSusChem; 2012 Dec; 5(12):2376-82. PubMed ID: 23109490
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Carbon nanomaterials used as conductive additives in lithium ion batteries.
    Zhang Q; Yu Z; Du P; Su C
    Recent Pat Nanotechnol; 2010 Jun; 4(2):100-10. PubMed ID: 20415660
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Can the performance of graphene nanosheets for lithium storage in Li-ion batteries be predicted?
    C OA; Caballero Á; Morales J
    Nanoscale; 2012 Mar; 4(6):2083-92. PubMed ID: 22358220
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Flexible holey graphene paper electrodes with enhanced rate capability for energy storage applications.
    Zhao X; Hayner CM; Kung MC; Kung HH
    ACS Nano; 2011 Nov; 5(11):8739-49. PubMed ID: 21980979
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Graphene-encapsulated iron microspheres on the graphene nanosheets.
    Guo P; Zhu G; Song H; Chen X; Zhang S
    Phys Chem Chem Phys; 2011 Oct; 13(39):17818-24. PubMed ID: 21909510
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparison of LiVPO4F to Li4Ti5O12 as anode materials for lithium-ion batteries.
    Ma R; Shao L; Wu K; Shui M; Wang D; Pan J; Long N; Ren Y; Shu J
    ACS Appl Mater Interfaces; 2013 Sep; 5(17):8615-27. PubMed ID: 23927499
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mesoporous carbon-coated LiFePO4 nanocrystals co-modified with graphene and Mg2+ doping as superior cathode materials for lithium ion batteries.
    Wang B; Xu B; Liu T; Liu P; Guo C; Wang S; Wang Q; Xiong Z; Wang D; Zhao XS
    Nanoscale; 2014 Jan; 6(2):986-95. PubMed ID: 24287590
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fibrous hybrid of graphene and sulfur nanocrystals for high-performance lithium-sulfur batteries.
    Zhou G; Yin LC; Wang DW; Li L; Pei S; Gentle IR; Li F; Cheng HM
    ACS Nano; 2013 Jun; 7(6):5367-75. PubMed ID: 23672616
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nonaqueous lithium-ion capacitors with high energy densities using trigol-reduced graphene oxide nanosheets as cathode-active material.
    Aravindan V; Mhamane D; Ling WC; Ogale S; Madhavi S
    ChemSusChem; 2013 Dec; 6(12):2240-4. PubMed ID: 23939711
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ternary Cu₂SnS₃ cabbage-like nanostructures: large-scale synthesis and their application in Li-ion batteries with superior reversible capacity.
    Qu B; Li H; Zhang M; Mei L; Chen L; Wang Y; Li Q; Wang T
    Nanoscale; 2011 Oct; 3(10):4389-93. PubMed ID: 21927737
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The ZnSn(OH)6 nanocube-graphene composite as an anode material for Li-ion batteries.
    Chen C; Zheng X; Yang J; Wei M
    Phys Chem Chem Phys; 2014 Oct; 16(37):20073-8. PubMed ID: 25130363
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Efficient preparation of highly hydrogenated graphene and its application as a high-performance anode material for lithium ion batteries.
    Chen W; Zhu Z; Li S; Chen C; Yan L
    Nanoscale; 2012 Mar; 4(6):2124-9. PubMed ID: 22334350
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Vapor-phase fabrication of β-iron oxide nanopyramids for lithium-ion battery anodes.
    Carraro G; Barreca D; Cruz-Yusta M; Gasparotto A; Maccato C; Morales J; Sada C; Sánchez L
    Chemphyschem; 2012 Dec; 13(17):3798-801. PubMed ID: 23097215
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An oil droplet template method for the synthesis of hierarchical structured Co3O4/C anodes for Li-ion batteries.
    Sun J; Liu H; Chen X; Evans DG; Yang W
    Nanoscale; 2013 Aug; 5(16):7564-71. PubMed ID: 23835539
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Investigation of modified graphene for energy storage applications.
    Shuvo MA; Khan MA; Karim H; Morton P; Wilson T; Lin Y
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):7881-5. PubMed ID: 23806171
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In situ nitrogenated graphene-few-layer WS2 composites for fast and reversible Li+ storage.
    Chen D; Ji G; Ding B; Ma Y; Qu B; Chen W; Lee JY
    Nanoscale; 2013 Sep; 5(17):7890-6. PubMed ID: 23851576
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Graphene-supported anatase TiO2 nanosheets for fast lithium storage.
    Ding S; Chen JS; Luan D; Boey FY; Madhavi S; Lou XW
    Chem Commun (Camb); 2011 May; 47(20):5780-2. PubMed ID: 21494738
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.