These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

342 related articles for article (PubMed ID: 23381093)

  • 41. A rationally designed composite of alternating strata of Si nanoparticles and graphene: a high-performance lithium-ion battery anode.
    Sun F; Huang K; Qi X; Gao T; Liu Y; Zou X; Wei X; Zhong J
    Nanoscale; 2013 Sep; 5(18):8586-92. PubMed ID: 23893258
    [TBL] [Abstract][Full Text] [Related]  

  • 42. High-performance supercapacitor based on three-dimensional flower-shaped Li
    Xing LL; Wu X; Huang KJ
    J Colloid Interface Sci; 2018 Nov; 529():171-179. PubMed ID: 29890410
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A novel method to enhance the conductance of transitional metal oxide electrodes.
    Wang R; Chen Z; Yu H; Jia X; Gao L; Sun J; Hicks RF; Lu Y
    Nanoscale; 2014 Apr; 6(7):3791-5. PubMed ID: 24577667
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Structurally tailored graphene nanosheets as lithium ion battery anodes: an insight to yield exceptionally high lithium storage performance.
    Li X; Hu Y; Liu J; Lushington A; Li R; Sun X
    Nanoscale; 2013 Dec; 5(24):12607-15. PubMed ID: 24177754
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Solvothermally exfoliated fluorographene for high-performance lithium primary batteries.
    Sun C; Feng Y; Li Y; Qin C; Zhang Q; Feng W
    Nanoscale; 2014 Mar; 6(5):2634-41. PubMed ID: 24336908
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Physical, electrochemical, and thermal properties of granulated natural graphite as anodes for Li-ion batteries.
    Jo YN; Park MS; Kim JH; Kim YJ
    J Nanosci Nanotechnol; 2013 May; 13(5):3731-6. PubMed ID: 23858938
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Facile synthesis of metal oxide/reduced graphene oxide hybrids with high lithium storage capacity and stable cyclability.
    Zhu J; Zhu T; Zhou X; Zhang Y; Lou XW; Chen X; Zhang H; Hng HH; Yan Q
    Nanoscale; 2011 Mar; 3(3):1084-9. PubMed ID: 21180729
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Graphene enhances Li storage capacity of porous single-crystalline silicon nanowires.
    Wang XL; Han WQ
    ACS Appl Mater Interfaces; 2010 Dec; 2(12):3709-13. PubMed ID: 21114292
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Reduced graphene oxide supported highly porous V2O5 spheres as a high-power cathode material for lithium ion batteries.
    Rui X; Zhu J; Sim D; Xu C; Zeng Y; Hng HH; Lim TM; Yan Q
    Nanoscale; 2011 Nov; 3(11):4752-8. PubMed ID: 21989744
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Photothermal-assisted fabrication of iron fluoride-graphene composite paper cathodes for high-energy lithium-ion batteries.
    Zhao X; Hayner CM; Kung MC; Kung HH
    Chem Commun (Camb); 2012 Oct; 48(79):9909-11. PubMed ID: 22935914
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Hierarchical protonated titanate nanostructures for lithium-ion batteries.
    Zhang Y; Tang Y; Yin S; Zeng Z; Zhang H; Li CM; Dong Z; Chen Z; Chen X
    Nanoscale; 2011 Oct; 3(10):4074-7. PubMed ID: 21853212
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Managing voids of Si anodes in lithium ion batteries.
    Li X; Zhi L
    Nanoscale; 2013 Oct; 5(19):8864-73. PubMed ID: 23942726
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Two-dimensional mesoporous carbon nanosheets and their derived graphene nanosheets: synthesis and efficient lithium ion storage.
    Fang Y; Lv Y; Che R; Wu H; Zhang X; Gu D; Zheng G; Zhao D
    J Am Chem Soc; 2013 Jan; 135(4):1524-30. PubMed ID: 23282081
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Building robust architectures of carbon and metal oxide nanocrystals toward high-performance anodes for lithium-ion batteries.
    Jia X; Chen Z; Cui X; Peng Y; Wang X; Wang G; Wei F; Lu Y
    ACS Nano; 2012 Nov; 6(11):9911-9. PubMed ID: 23046380
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Tailored Li4Ti5O12 nanofibers with outstanding kinetics for lithium rechargeable batteries.
    Jo MR; Jung YS; Kang YM
    Nanoscale; 2012 Nov; 4(21):6870-5. PubMed ID: 23026842
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Highly Reversible Lithium-ions Storage of Molybdenum Dioxide Nanoplates for High Power Lithium-ion Batteries.
    Liu X; Yang J; Hou W; Wang J; Nuli Y
    ChemSusChem; 2015 Aug; 8(16):2621-4. PubMed ID: 26183572
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Functionalized graphene for high performance lithium ion capacitors.
    Lee JH; Shin WH; Ryou MH; Jin JK; Kim J; Choi JW
    ChemSusChem; 2012 Dec; 5(12):2328-33. PubMed ID: 23112143
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Porous Co3O4/CuO composite assembled from nanosheets as high-performance anodes for lithium-ion batteries.
    Hao Q; Zhao D; Duan H; Xu C
    ChemSusChem; 2015 Apr; 8(8):1435-41. PubMed ID: 25828049
    [TBL] [Abstract][Full Text] [Related]  

  • 59. MnCo2O4 nanowires anchored on reduced graphene oxide sheets as effective bifunctional catalysts for Li-O2 battery cathodes.
    Kim JG; Kim Y; Noh Y; Kim WB
    ChemSusChem; 2015 May; 8(10):1752-60. PubMed ID: 25908219
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Design of electrical conductive composites: tuning the morphology to improve the electrical properties of graphene filled immiscible polymer blends.
    Mao C; Zhu Y; Jiang W
    ACS Appl Mater Interfaces; 2012 Oct; 4(10):5281-6. PubMed ID: 22950786
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.