These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 23381398)

  • 1. Interference of conically scattered light in surface plasmon resonance.
    Webster A; Vollmer F
    Opt Lett; 2013 Feb; 38(3):244-6. PubMed ID: 23381398
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface plasmon Raman scattering studies of liquid crystal anchoring on liquid-crystal-based self-assembled monolayers.
    Critchley K; Cheadle EM; Zhang HL; Baldwin KJ; Liu Q; Cheng Y; Fukushima H; Tamaki T; Batchelder DN; Bushby RJ; Evans SD
    J Phys Chem B; 2009 Nov; 113(47):15550-7. PubMed ID: 19921953
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct imaging of localized surface plasmon polaritons.
    Balci S; Karademir E; Kocabas C; Aydinli A
    Opt Lett; 2011 Sep; 36(17):3401-3. PubMed ID: 21886224
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface plasmon polaritons in metal stripes and wires.
    Krenn JR; Weeber JC
    Philos Trans A Math Phys Eng Sci; 2004 Apr; 362(1817):739-56. PubMed ID: 15306491
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing large area surface plasmon interference in thin metal films using photon scanning tunneling microscopy.
    Passian A; Wig A; Lereu AL; Evans PG; Meriaudeau F; Thundat T; Ferrell TL
    Ultramicroscopy; 2004 Aug; 100(3-4):429-36. PubMed ID: 15231335
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photothermal measurement of absorption and scattering losses in thin films excited by surface plasmons.
    Domené EA; Balzarotti F; Bragas AV; Martínez OE
    Opt Lett; 2009 Dec; 34(24):3797-9. PubMed ID: 20016617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfabricated Otto chip device for surface plasmon resonance-based optical sensing.
    Fontana E; Kim JM; Llamas-Garro I; Cavalcanti GO
    Appl Opt; 2015 Nov; 54(31):9200-4. PubMed ID: 26560574
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental analysis of waveguide-coupled surface-plasmon-polariton cone properties.
    Nyamekye CKA; Zhu Q; Mahmood R; Weibel SC; Hillier AC; Smith EA
    Anal Chim Acta; 2019 Feb; 1048():123-131. PubMed ID: 30598142
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long range surface plasmon-coupled fluorescence emission for biosensor applications.
    Toma K; Dostalek J; Knoll W
    Opt Express; 2011 Jun; 19(12):11090-9. PubMed ID: 21716337
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scattered light interference from a single metal nanoparticle and its mirror image.
    Eah SK; Jaeger HM; Scherer NF; Wiederrecht GP; Lin XM
    J Phys Chem B; 2005 Jun; 109(24):11858-61. PubMed ID: 16852457
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of surface-plasmon-polaritons-assisted interference imaging by using silver film with rough surface.
    Shi S; Zhang Z; He M; Li X; Yang J; Du J
    Opt Express; 2010 May; 18(10):10685-93. PubMed ID: 20588921
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface plasmon-coupled emission on plasmonic Bragg gratings.
    Toma M; Toma K; Adam P; Homola J; Knoll W; Dostálek J
    Opt Express; 2012 Jun; 20(13):14042-53. PubMed ID: 22714469
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strong resonant coupling of surface plasmon polaritons to radiation modes through a thin metal slab with dielectric gratings.
    Shen S; Forsberg E; Han Z; He S
    J Opt Soc Am A Opt Image Sci Vis; 2007 Jan; 24(1):225-30. PubMed ID: 17164864
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Minimization of detection volume by surface-plasmon-coupled emission.
    Gryczynski Z; Borejdo J; Calander N; Matveeva EG; Gryczynski I
    Anal Biochem; 2006 Sep; 356(1):125-31. PubMed ID: 16764813
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prism-based surface plasmon coupled emission imaging.
    Cai WP; Liu Q; Cao SH; Weng YH; Liu XQ; Li YQ
    Chemphyschem; 2012 Dec; 13(17):3848-51. PubMed ID: 23001856
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of the metal film thickness on the sensitivity of surface plasmon resonance biosensors.
    Ekgasit S; Thammacharoen C; Yu F; Knoll W
    Appl Spectrosc; 2005 May; 59(5):661-7. PubMed ID: 15969812
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Excitation of surface plasmons by finite width beams.
    Kou EF; Tamir T
    Appl Opt; 1989 Mar; 28(6):1169-77. PubMed ID: 20548637
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmonic band gap engineering of plasmon-exciton coupling.
    Karademir E; Balci S; Kocabas C; Aydinli A
    Opt Lett; 2014 Oct; 39(19):5697-700. PubMed ID: 25360962
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A practical nanofabrication method: surface plasmon polaritons interference lithography based on backside-exposure technique.
    He M; Zhang Z; Shi S; Du J; Li X; Li S; Ma W
    Opt Express; 2010 Jul; 18(15):15975-80. PubMed ID: 20720981
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlled topography change of subdiffraction structures based on photosensitive polymer films induced by surface plasmon polaritons.
    König T; Tsukruk VV; Santer S
    ACS Appl Mater Interfaces; 2013 Jul; 5(13):6009-16. PubMed ID: 23701312
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.