These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 23381592)

  • 1. An explant assay for assessing cellular behavior of the cranial mesenchyme.
    Sarkar AA; Zohn IE
    J Vis Exp; 2013 Jan; (71):. PubMed ID: 23381592
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Does the cranial mesenchyme contribute to neural fold elevation during neurulation?
    Zohn IE; Sarkar AA
    Birth Defects Res A Clin Mol Teratol; 2012 Oct; 94(10):841-8. PubMed ID: 22945385
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In toto live imaging of mouse morphogenesis and new insights into neural tube closure.
    Massarwa R; Niswander L
    Development; 2013 Jan; 140(1):226-36. PubMed ID: 23175632
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hectd1 regulates intracellular localization and secretion of Hsp90 to control cellular behavior of the cranial mesenchyme.
    Sarkar AA; Zohn IE
    J Cell Biol; 2012 Mar; 196(6):789-800. PubMed ID: 22431752
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell lineage in mammalian craniofacial mesenchyme.
    Yoshida T; Vivatbutsiri P; Morriss-Kay G; Saga Y; Iseki S
    Mech Dev; 2008; 125(9-10):797-808. PubMed ID: 18617001
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Hectd1 ubiquitin ligase is required for development of the head mesenchyme and neural tube closure.
    Zohn IE; Anderson KV; Niswander L
    Dev Biol; 2007 Jun; 306(1):208-21. PubMed ID: 17442300
    [TBL] [Abstract][Full Text] [Related]  

  • 7. twist is required in head mesenchyme for cranial neural tube morphogenesis.
    Chen ZF; Behringer RR
    Genes Dev; 1995 Mar; 9(6):686-99. PubMed ID: 7729687
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extracellular matrix couples the convergence movements of mesoderm and neural plate during the early stages of neurulation.
    Araya C; Carmona-Fontaine C; Clarke JD
    Dev Dyn; 2016 May; 245(5):580-9. PubMed ID: 26933766
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular patterning of the embryonic cranial mesenchyme revealed by genome-wide transcriptional profiling.
    Dasgupta K; Chung JU; Asam K; Jeong J
    Dev Biol; 2019 Nov; 455(2):434-448. PubMed ID: 31351040
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The distribution of cranial neural crest cells during ocular morphogenesis.
    Meier S
    Prog Clin Biol Res; 1982; 82():1-15. PubMed ID: 7111269
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptional targets of TWIST1 in the cranial mesoderm regulate cell-matrix interactions and mesenchyme maintenance.
    Bildsoe H; Fan X; Wilkie EE; Ashoti A; Jones VJ; Power M; Qin J; Wang J; Tam PPL; Loebel DAF
    Dev Biol; 2016 Oct; 418(1):189-203. PubMed ID: 27546376
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mesoderm is required for coordinated cell movements within zebrafish neural plate in vivo.
    Araya C; Tawk M; Girdler GC; Costa M; Carmona-Fontaine C; Clarke JD
    Neural Dev; 2014 Apr; 9():9. PubMed ID: 24755297
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conditional inactivation of Tgfbr2 in cranial neural crest causes cleft palate and calvaria defects.
    Ito Y; Yeo JY; Chytil A; Han J; Bringas P; Nakajima A; Shuler CF; Moses HL; Chai Y
    Development; 2003 Nov; 130(21):5269-80. PubMed ID: 12975342
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell movements and control of patterned tissue assembly during craniofacial development.
    Noden DM
    J Craniofac Genet Dev Biol; 1991; 11(4):192-213. PubMed ID: 1812125
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Explant culture of mouse embryonic whole lung, isolated epithelium, or mesenchyme under chemically defined conditions as a system to evaluate the molecular mechanism of branching morphogenesis and cellular differentiation.
    Del Moral PM; Warburton D
    Methods Mol Biol; 2010; 633():71-9. PubMed ID: 20204620
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissection, Culture and Analysis of Primary Cranial Neural Crest Cells from Mouse for the Study of Neural Crest Cell Delamination and Migration.
    Gonzalez Malagon SG; Dobson L; Muñoz AML; Dawson M; Barrell W; Marangos P; Krause M; Liu KJ
    J Vis Exp; 2019 Oct; (152):. PubMed ID: 31633677
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Origins and patterning of craniofacial mesenchymal tissues.
    Noden DM
    J Craniofac Genet Dev Biol Suppl; 1986; 2():15-31. PubMed ID: 3491109
    [TBL] [Abstract][Full Text] [Related]  

  • 18. hmmr mediates anterior neural tube closure and morphogenesis in the frog Xenopus.
    Prager A; Hagenlocher C; Ott T; Schambony A; Feistel K
    Dev Biol; 2017 Oct; 430(1):188-201. PubMed ID: 28778799
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deletion of neural tube defect-associated gene Mthfd1l causes reduced cranial mesenchyme density.
    Shin M; Vaughn A; Momb J; Appling DR
    Birth Defects Res; 2019 Nov; 111(19):1520-1534. PubMed ID: 31518072
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of cranial morphogenesis and cell fate at the neural crest-mesoderm boundary by engrailed 1.
    Deckelbaum RA; Holmes G; Zhao Z; Tong C; Basilico C; Loomis CA
    Development; 2012 Apr; 139(7):1346-58. PubMed ID: 22395741
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.