These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 23381617)

  • 1. Volatile fatty acids distribution during acidogenesis of algal residues with pH control.
    Li Y; Hua D; Zhang J; Zhao Y; Xu H; Liang X; Zhang X
    World J Microbiol Biotechnol; 2013 Jun; 29(6):1067-73. PubMed ID: 23381617
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling the dynamic volatile fatty acids profiles with pH and hydraulic retention time in an anaerobic baffled reactor during the startup period.
    Shi E; Li J; Leu SY; Antwi P
    Bioresour Technol; 2016 Dec; 222():49-58. PubMed ID: 27710907
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acidogenic properties of carbohydrate-rich wasted potato and microbial community analysis: Effect of pH.
    Li Y; Zhang X; Xu H; Mu H; Hua D; Jin F; Meng G
    J Biosci Bioeng; 2019 Jul; 128(1):50-55. PubMed ID: 30648546
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Volatile fatty acids production from anaerobic treatment of cassava waste water: effect of temperature and alkalinity.
    Hasan SD; Giongo C; Fiorese ML; Gomes SD; Ferrari TC; Savoldi TE
    Environ Technol; 2015; 36(20):2637-46. PubMed ID: 25885093
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Volatile fatty acids (VFAs) production from swine manure through short-term dry anaerobic digestion and its separation from nitrogen and phosphorus resources in the digestate.
    Huang W; Huang W; Yuan T; Zhao Z; Cai W; Zhang Z; Lei Z; Feng C
    Water Res; 2016 Mar; 90():344-353. PubMed ID: 26766158
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Volatile fatty acids production from protease pretreated Chlorella biomass via anaerobic digestion.
    Magdalena JA; Tomás-Pejó E; Ballesteros M; González-Fernandez C
    Biotechnol Prog; 2018 Nov; 34(6):1363-1369. PubMed ID: 30281953
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Factors influencing volatile fatty acids production from food wastes via anaerobic digestion.
    Lukitawesa ; Patinvoh RJ; Millati R; Sárvári-Horváth I; Taherzadeh MJ
    Bioengineered; 2020 Dec; 11(1):39-52. PubMed ID: 31880192
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel strategy for enhancing acetic and formic acids generation in acidogenesis of anaerobic digestion via targeted adjusting environmental niches.
    Wang R; Lv N; Li C; Cai G; Pan X; Li Y; Zhu G
    Water Res; 2021 Apr; 193():116896. PubMed ID: 33571902
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mesophilic, thermophilic and hyperthermophilic acidogenic fermentation of food waste in batch: Effect of inoculum source.
    Arras W; Hussain A; Hausler R; Guiot SR
    Waste Manag; 2019 Mar; 87():279-287. PubMed ID: 31109527
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced volatile fatty acids accumulation in anaerobic digestion through arresting methanogenesis by using hydrogen peroxide.
    Xu Y; He Z
    Water Environ Res; 2021 Oct; 93(10):2051-2059. PubMed ID: 33894043
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of undissociated volatile fatty acids on acidogenesis in a two-phase anaerobic system.
    Xiao K; Zhou Y; Guo C; Maspolim Y; Ng WJ
    J Environ Sci (China); 2016 Apr; 42():196-201. PubMed ID: 27090711
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced volatile fatty acids (VFAs) production in a thermophilic fermenter with stepwise pH increase - Investigation on dissolved organic matter transformation and microbial community shift.
    Chen Y; Jiang X; Xiao K; Shen N; Zeng RJ; Zhou Y
    Water Res; 2017 Apr; 112():261-268. PubMed ID: 28178608
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Volatile Fatty Acids Production from Microalgae Biomass: Anaerobic Digester Performance and Population Dynamics during Stable Conditions, Starvation, and Process Recovery.
    Magdalena JA; Tomás-Pejó E; González-Fernández C
    Molecules; 2019 Dec; 24(24):. PubMed ID: 31842312
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrolysis and acidification of waste activated sludge at different pHs.
    Chen Y; Jiang S; Yuan H; Zhou Q; Gu G
    Water Res; 2007 Feb; 41(3):683-9. PubMed ID: 16987541
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of Organic Loading Rate in Volatile Fatty Acids Production and Population Dynamics Using Microalgae Biomass as Substrate.
    Magdalena JA; Greses S; González-Fernández C
    Sci Rep; 2019 Dec; 9(1):18374. PubMed ID: 31804573
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of pH on the production of volatile fatty acids and microbial dynamics in long-term reactor operation.
    Atasoy M; Cetecioglu Z
    J Environ Manage; 2022 Oct; 319():115700. PubMed ID: 35982552
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A study of two-stage anaerobic digestion of solid potato waste using reactors under mesophilic and thermophilic conditions.
    Parawira W; Murto M; Read JS; Mattiasson B
    Environ Technol; 2007 Nov; 28(11):1205-16. PubMed ID: 18290530
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acidogenic fermentation of iron-enhanced primary sedimentation sludge under different pH conditions for production of volatile fatty acids.
    Lin L; Li XY
    Chemosphere; 2018 Mar; 194():692-700. PubMed ID: 29245135
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Volatile fatty acid production from mesophilic acidogenic fermentation of organic fraction of municipal solid waste and food waste under acidic and alkaline pH.
    Cheah YK; Vidal-Antich C; Dosta J; Mata-Álvarez J
    Environ Sci Pollut Res Int; 2019 Dec; 26(35):35509-35522. PubMed ID: 31111388
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.