These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 23381801)
41. Integrating site-specific dispersion modeling into life cycle assessment, with a focus on inhalation risks in chemical production. Tian S; Bilec M J Air Waste Manag Assoc; 2018 Nov; 68(11):1224-1238. PubMed ID: 29985784 [TBL] [Abstract][Full Text] [Related]
42. Decision support methods for the environmental assessment of contamination at mining sites. Jordan G; Abdaal A Environ Monit Assess; 2013 Sep; 185(9):7809-32. PubMed ID: 23456223 [TBL] [Abstract][Full Text] [Related]
43. A new method for environmental site assessment of urban solid waste landfills. Ghanbari F; Amin Sharee F; Monavari M; Zaredar N Environ Monit Assess; 2012 Mar; 184(3):1221-30. PubMed ID: 21494828 [TBL] [Abstract][Full Text] [Related]
44. Environmental impact assessment studies for mining area in Goa, India, using the new approach. Sarupria M; Manjare SD; Girap M Environ Monit Assess; 2018 Dec; 191(1):18. PubMed ID: 30542806 [TBL] [Abstract][Full Text] [Related]
45. Risk Assessment and Source Identification of 17 Metals and Metalloids on Soils from the Half-Century Old Tungsten Mining Areas in Lianhuashan, Southern China. Guo L; Zhao W; Gu X; Zhao X; Chen J; Cheng S Int J Environ Res Public Health; 2017 Nov; 14(12):. PubMed ID: 29186069 [No Abstract] [Full Text] [Related]
46. Changes detected in the extent of surface mining and reclamation using multitemporal Landsat imagery: a case study of Jiu Valley, Romania. Vorovencii I Environ Monit Assess; 2021 Jan; 193(1):30. PubMed ID: 33398530 [TBL] [Abstract][Full Text] [Related]
47. [Spatial Distribution Characteristics, Pollution, and Ecological Risk Assessment of Soil Heavy Metals Around Mercury Mining Areas]. Wang R; Deng H; Jia ZM; Wang JB; Yu F; Zeng QQ Huan Jing Ke Xue; 2021 Jun; 42(6):3018-3027. PubMed ID: 34032102 [TBL] [Abstract][Full Text] [Related]
48. A modelling approach to assess the impact of land mining on marine biodiversity: Assessment in coastal catchments experiencing catastrophic events (SW Brazil). Magris RA; Marta-Almeida M; Monteiro JAF; Ban NC Sci Total Environ; 2019 Apr; 659():828-840. PubMed ID: 31096413 [TBL] [Abstract][Full Text] [Related]
49. Combination of beehive matrices analysis and ant biodiversity to study heavy metal pollution impact in a post-mining area (Sardinia, Italy). Satta A; Verdinelli M; Ruiu L; Buffa F; Salis S; Sassu A; Floris I Environ Sci Pollut Res Int; 2012 Nov; 19(9):3977-88. PubMed ID: 22532121 [TBL] [Abstract][Full Text] [Related]
50. Heavy Metal Pollution and Ecological Risk Assessment of the Agriculture Soil in Xunyang Mining Area, Shaanxi Province, Northwestern China. Zhu D; Wei Y; Zhao Y; Wang Q; Han J Bull Environ Contam Toxicol; 2018 Aug; 101(2):178-184. PubMed ID: 29947911 [TBL] [Abstract][Full Text] [Related]
51. The risk of cross-border pollution and the influence of regional climate on the rainwater chemistry in the Southern Carpathians, Romania. Keresztesi Á; Nita IA; Birsan MV; Bodor Z; Szép R Environ Sci Pollut Res Int; 2020 Mar; 27(9):9382-9402. PubMed ID: 31916162 [TBL] [Abstract][Full Text] [Related]
52. Mining-Related Sediment and Soil Contamination in a Large Superfund Site: Characterization, Habitat Implications, and Remediation. Juracek KE; Drake KD Environ Manage; 2016 Oct; 58(4):721-40. PubMed ID: 27357805 [TBL] [Abstract][Full Text] [Related]
53. Screening risk assessment tools for assessing the environmental impact in an abandoned pyritic mine in Spain. Moreno-Jiménez E; García-Gómez C; Oropesa AL; Esteban E; Haro A; Carpena-Ruiz R; Tarazona JV; Peñalosa JM; Fernández MD Sci Total Environ; 2011 Jan; 409(4):692-703. PubMed ID: 21115190 [TBL] [Abstract][Full Text] [Related]
54. Ecological vulnerability analysis: a river basin case study. Ippolito A; Sala S; Faber JH; Vighi M Sci Total Environ; 2010 Aug; 408(18):3880-90. PubMed ID: 19880159 [TBL] [Abstract][Full Text] [Related]
55. Potential risk assessment in stream sediments, soils and waters after remediation in an abandoned W>Sn mine (NE Portugal). Antunes IM; Gomes ME; Neiva AM; Carvalho PC; Santos AC Ecotoxicol Environ Saf; 2016 Nov; 133():135-45. PubMed ID: 27448230 [TBL] [Abstract][Full Text] [Related]
56. Environmental assessment of agricultural activities and groundwater nitrate pollution susceptibility: a regional case study (Southwestern Romania). Mititelu-Ionuș O; Simulescu D; Popescu SM Environ Monit Assess; 2019 Jul; 191(8):501. PubMed ID: 31327079 [TBL] [Abstract][Full Text] [Related]
57. Testing and modeling the influence of reclamation and control methods for reducing nonpoint mercury emissions associated with industrial open pit gold mines. Miller MB; Gustin MS J Air Waste Manag Assoc; 2013 Jun; 63(6):681-93. PubMed ID: 23858994 [TBL] [Abstract][Full Text] [Related]
58. State of remediation and metal toxicity in the Tri-State Mining District, USA. Johnson AW; Gutiérrez M; Gouzie D; McAliley LR Chemosphere; 2016 Feb; 144():1132-41. PubMed ID: 26457623 [TBL] [Abstract][Full Text] [Related]
59. The utility of Pinus sylvestris L. in dendrochemical investigations: pollution impact of lead mining and smelting in Darley Dale, Derbyshire, UK. Lageard JG; Howell JA; Rothwell JJ; Drew IB Environ Pollut; 2008 May; 153(2):284-94. PubMed ID: 17959285 [TBL] [Abstract][Full Text] [Related]
60. Impact of metals on the environment due to technical accident at Aurul Baia Mare, Romania. Michnea A; Gherheş I Int J Occup Med Environ Health; 2001; 14(3):255-9. PubMed ID: 11764854 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]