BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

65 related articles for article (PubMed ID: 23381867)

  • 1. Analysis of protein acetyltransferase structure-function relation by surface-enhanced raman scattering (SERS): a tool to screen and characterize small molecule modulators.
    Arif M; Karthigeyan D; Siddhanta S; Kumar GV; Narayana C; Kundu TK
    Methods Mol Biol; 2013; 981():239-61. PubMed ID: 23381867
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Autoacetylation induced specific structural changes in histone acetyltransferase domain of p300: probed by surface enhanced Raman spectroscopy.
    Arif M; Kumar GV; Narayana C; Kundu TK
    J Phys Chem B; 2007 Oct; 111(41):11877-9. PubMed ID: 17894486
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activation of p300 histone acetyltransferase by small molecules altering enzyme structure: probed by surface-enhanced Raman spectroscopy.
    Mantelingu K; Kishore AH; Balasubramanyam K; Kumar GV; Altaf M; Swamy SN; Selvi R; Das C; Narayana C; Rangappa KS; Kundu TK
    J Phys Chem B; 2007 May; 111(17):4527-34. PubMed ID: 17417897
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface-enhanced Raman scattering studies of human transcriptional coactivator p300.
    Pavan Kumar GV; Ashok Reddy BA; Arif M; Kundu TK; Narayana C
    J Phys Chem B; 2006 Aug; 110(33):16787-92. PubMed ID: 16913819
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Histone acetyl transferases as emerging drug targets.
    Dekker FJ; Haisma HJ
    Drug Discov Today; 2009 Oct; 14(19-20):942-8. PubMed ID: 19577000
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrasensitive detection and characterization of posttranslational modifications using surface-enhanced Raman spectroscopy.
    Sundararajan N; Mao D; Chan S; Koo TW; Su X; Sun L; Zhang J; Sung KB; Yamakawa M; Gafken PR; Randolph T; McLerran D; Feng Z; Berlin AA; Roth MB
    Anal Chem; 2006 Jun; 78(11):3543-50. PubMed ID: 16737206
    [TBL] [Abstract][Full Text] [Related]  

  • 7. K-acetylation and its enzymes: overview and new developments.
    Aka JA; Kim GW; Yang XJ
    Handb Exp Pharmacol; 2011; 206():1-12. PubMed ID: 21879443
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bisubstrate analogue structure-activity relationships for p300 histone acetyltransferase inhibitors.
    Sagar V; Zheng W; Thompson PR; Cole PA
    Bioorg Med Chem; 2004 Jun; 12(12):3383-90. PubMed ID: 15158807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Defining the orphan functions of lysine acetyltransferases.
    Montgomery DC; Sorum AW; Meier JL
    ACS Chem Biol; 2015 Jan; 10(1):85-94. PubMed ID: 25591746
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular, cellular, and physiological significance of N-terminal acetylation.
    Aksnes H; Hole K; Arnesen T
    Int Rev Cell Mol Biol; 2015; 316():267-305. PubMed ID: 25805127
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of structural features of 2-alkylidene-1,3-dicarbonyl derivatives that induce inhibition and/or activation of histone acetyltransferases KAT3B/p300 and KAT2B/PCAF.
    Castellano S; Milite C; Feoli A; Viviano M; Mai A; Novellino E; Tosco A; Sbardella G
    ChemMedChem; 2015 Jan; 10(1):144-57. PubMed ID: 25333655
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure of a ternary Naa50p (NAT5/SAN) N-terminal acetyltransferase complex reveals the molecular basis for substrate-specific acetylation.
    Liszczak G; Arnesen T; Marmorstein R
    J Biol Chem; 2011 Oct; 286(42):37002-10. PubMed ID: 21900231
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Smad3 is acetylated by p300/CBP to regulate its transactivation activity.
    Inoue Y; Itoh Y; Abe K; Okamoto T; Daitoku H; Fukamizu A; Onozaki K; Hayashi H
    Oncogene; 2007 Jan; 26(4):500-8. PubMed ID: 16862174
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Small molecule inhibitors of histone acetyltransferases as epigenetic tools and drug candidates.
    Furdas SD; Kannan S; Sippl W; Jung M
    Arch Pharm (Weinheim); 2012 Jan; 345(1):7-21. PubMed ID: 22234972
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessing acetylation of NF-kappaB.
    Chen LF; Greene WC
    Methods; 2005 Aug; 36(4):368-75. PubMed ID: 16111893
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction between acetylated MyoD and the bromodomain of CBP and/or p300.
    Polesskaya A; Naguibneva I; Duquet A; Bengal E; Robin P; Harel-Bellan A
    Mol Cell Biol; 2001 Aug; 21(16):5312-20. PubMed ID: 11463815
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Specific inhibition of p300-HAT alters global gene expression and represses HIV replication.
    Mantelingu K; Reddy BA; Swaminathan V; Kishore AH; Siddappa NB; Kumar GV; Nagashankar G; Natesh N; Roy S; Sadhale PP; Ranga U; Narayana C; Kundu TK
    Chem Biol; 2007 Jun; 14(6):645-57. PubMed ID: 17584612
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acetylation of HIV-1 integrase by p300 regulates viral integration.
    Cereseto A; Manganaro L; Gutierrez MI; Terreni M; Fittipaldi A; Lusic M; Marcello A; Giacca M
    EMBO J; 2005 Sep; 24(17):3070-81. PubMed ID: 16096645
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reversible acetylation of non histone proteins: role in cellular function and disease.
    Batta K; Das C; Gadad S; Shandilya J; Kundu TK
    Subcell Biochem; 2007; 41():193-212. PubMed ID: 17484129
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of p300 acetyltransferase substrate specificity by MALDI TOF mass spectrometry.
    Dormeyer W; Ott M; Schnölzer M
    Methods; 2005 Aug; 36(4):376-82. PubMed ID: 16085422
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.