These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 23381872)
1. Engineering of a bacterial tyrosinase for improved catalytic efficiency towards D-tyrosine using random and site directed mutagenesis approaches. Molloy S; Nikodinovic-Runic J; Martin LB; Hartmann H; Solano F; Decker H; O'Connor KE Biotechnol Bioeng; 2013 Jul; 110(7):1849-57. PubMed ID: 23381872 [TBL] [Abstract][Full Text] [Related]
2. Biocatalytic versatility of engineered and wild-type tyrosinase from R. solanacearum for the synthesis of 4-halocatechols. Davis R; Molloy S; Quigley B; Nikodinovic-Runic J; Solano F; O'Connor KE Appl Microbiol Biotechnol; 2018 Jun; 102(12):5121-5131. PubMed ID: 29691629 [TBL] [Abstract][Full Text] [Related]
3. A tyrosinase with an abnormally high tyrosine hydroxylase/dopa oxidase ratio. Hernández-Romero D; Sanchez-Amat A; Solano F FEBS J; 2006 Jan; 273(2):257-70. PubMed ID: 16403014 [TBL] [Abstract][Full Text] [Related]
4. Isolation, cloning and characterization of a tyrosinase with improved activity in organic solvents from Bacillus megaterium. Shuster V; Fishman A J Mol Microbiol Biotechnol; 2009; 17(4):188-200. PubMed ID: 19672047 [TBL] [Abstract][Full Text] [Related]
5. Engineering of pyranose 2-oxidase from Peniophora gigantea towards improved thermostability and catalytic efficiency. Bastian S; Rekowski MJ; Witte K; Heckmann-Pohl DM; Giffhorn F Appl Microbiol Biotechnol; 2005 Jun; 67(5):654-63. PubMed ID: 15660220 [TBL] [Abstract][Full Text] [Related]
6. Directed evolution relieves product inhibition and confers in vivo function to a rationally designed tyrosine aminotransferase. Rothman SC; Voorhies M; Kirsch JF Protein Sci; 2004 Mar; 13(3):763-72. PubMed ID: 14767072 [TBL] [Abstract][Full Text] [Related]
7. Engineering endoglucanase II from Trichoderma reesei to improve the catalytic efficiency at a higher pH optimum. Qin Y; Wei X; Song X; Qu Y J Biotechnol; 2008 Jun; 135(2):190-5. PubMed ID: 18468710 [TBL] [Abstract][Full Text] [Related]
8. Structure-activity relationship of a cold-adapted purine nucleoside phosphorylase by site-directed mutagenesis. Xie X; Huo W; Xia J; Xu Q; Chen N Enzyme Microb Technol; 2012 Jun; 51(1):59-65. PubMed ID: 22579392 [TBL] [Abstract][Full Text] [Related]
9. Mutational, structural, and kinetic evidence for a dissociative mechanism in the GDP-mannose mannosyl hydrolase reaction. Xia Z; Azurmendi HF; Lairson LL; Withers SG; Gabelli SB; Bianchet MA; Amzel LM; Mildvan AS Biochemistry; 2005 Jun; 44(25):8989-97. PubMed ID: 15966723 [TBL] [Abstract][Full Text] [Related]
10. The key role of a non-active-site residue Met148 on the catalytic efficiency of meta-cleavage product hydrolase BphD. Zhou H; Qu Y; Kong C; Shen E; Wang J; Zhang X; Ma Q; Zhou J Appl Microbiol Biotechnol; 2013 Dec; 97(24):10399-411. PubMed ID: 23494625 [TBL] [Abstract][Full Text] [Related]
11. Molecular mechanisms of improvement of hydrolytic antibody 6D9 by site-directed mutagenesis. Takahashi-Ando N; Shimazaki K; Kakinuma H; Fujii I; Nishi Y J Biochem; 2006 Oct; 140(4):509-15. PubMed ID: 16921165 [TBL] [Abstract][Full Text] [Related]
12. Tyr115, gln165 and trp209 contribute to the 1, 2-epoxy-3-(p-nitrophenoxy)propane-conjugating activity of glutathione S-transferase cGSTM1-1. Chern MK; Wu TC; Hsieh CH; Chou CC; Liu LF; Kuan IC; Yeh YH; Hsiao CD; Tam MF J Mol Biol; 2000 Jul; 300(5):1257-69. PubMed ID: 10903867 [TBL] [Abstract][Full Text] [Related]
13. Rationally selected single-site mutants of the Thermoascus aurantiacus endoglucanase increase hydrolytic activity on cellulosic substrates. Srikrishnan S; Randall A; Baldi P; Da Silva NA Biotechnol Bioeng; 2012 Jun; 109(6):1595-9. PubMed ID: 22180009 [TBL] [Abstract][Full Text] [Related]
14. Improvement of the fungal enzyme pyranose 2-oxidase using protein engineering. Heckmann-Pohl DM; Bastian S; Altmeier S; Antes I J Biotechnol; 2006 Jun; 124(1):26-40. PubMed ID: 16569455 [TBL] [Abstract][Full Text] [Related]
15. Engineering of formate dehydrogenase: synergistic effect of mutations affecting cofactor specificity and chemical stability. Hoelsch K; Sührer I; Heusel M; Weuster-Botz D Appl Microbiol Biotechnol; 2013 Mar; 97(6):2473-81. PubMed ID: 22588502 [TBL] [Abstract][Full Text] [Related]
16. Cloning, expression, and directed evolution of carbonyl reductase from Leifsonia xyli HS0904 with enhanced catalytic efficiency. Wang NQ; Sun J; Huang J; Wang P Appl Microbiol Biotechnol; 2014 Oct; 98(20):8591-601. PubMed ID: 24788330 [TBL] [Abstract][Full Text] [Related]
17. Histidine residues at the copper-binding site in human tyrosinase are essential for its catalytic activities. Noh H; Lee SJ; Jo HJ; Choi HW; Hong S; Kong KH J Enzyme Inhib Med Chem; 2020 Dec; 35(1):726-732. PubMed ID: 32180482 [TBL] [Abstract][Full Text] [Related]
18. Kinetic and spectroscopic characterization of the H178A methionyl aminopeptidase from Escherichia coli. Copik AJ; Swierczek SI; Lowther WT; D'souza VM; Matthews BW; Holz RC Biochemistry; 2003 May; 42(20):6283-92. PubMed ID: 12755633 [TBL] [Abstract][Full Text] [Related]
19. Evidence for a catalytic dyad in the active site of homocitrate synthase from Saccharomyces cerevisiae. Qian J; Khandogin J; West AH; Cook PF Biochemistry; 2008 Jul; 47(26):6851-8. PubMed ID: 18533686 [TBL] [Abstract][Full Text] [Related]
20. A single amino acid substitution in the human and a bacterial hypoxanthine phosphoribosyltransferase modulates specificity for the binding of guanine. Lee CC; Craig SP; Eakin AE Biochemistry; 1998 Mar; 37(10):3491-8. PubMed ID: 9521670 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]