BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 23382013)

  • 1. Using conditional inference trees and random forests to predict the bioaccumulation potential of organic chemicals.
    Strempel S; Nendza M; Scheringer M; Hungerbühler K
    Environ Toxicol Chem; 2013 Apr; 32(5):1187-95. PubMed ID: 23382013
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Environmental risk assessment of selected organic chemicals based on TOC test and QSAR estimation models.
    Chi Y; Zhang H; Huang Q; Lin Y; Ye G; Zhu H; Dong S
    J Environ Sci (China); 2018 Feb; 64():23-31. PubMed ID: 29478644
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A reductionist mechanistic model for bioconcentration of neutral and weakly polar organic compounds in fish.
    Kuo DT; Di Toro DM
    Environ Toxicol Chem; 2013 Sep; 32(9):2089-99. PubMed ID: 23703865
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigating the mechanisms of bioconcentration through QSAR classification trees.
    Grisoni F; Consonni V; Vighi M; Villa S; Todeschini R
    Environ Int; 2016 Mar; 88():198-205. PubMed ID: 26760717
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Methods for estimating the bioconcentration factor of ionizable organic chemicals.
    Fu W; Franco A; Trapp S
    Environ Toxicol Chem; 2009 Jul; 28(7):1372-9. PubMed ID: 19245273
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Reduced Model for Bioconcentration and Biotransformation of Neutral Organic Compounds in Midge.
    Kuo DTF; Chen CC
    Environ Toxicol Chem; 2021 Jan; 40(1):57-71. PubMed ID: 33044762
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a list of reference chemicals for evaluating alternative methods to in vivo fish bioaccumulation tests.
    Rodriguez-Sanchez N; Cronin MT; Lillicrap A; Madden JC; Piechota P; Tollefsen KE
    Environ Toxicol Chem; 2014 Dec; 33(12):2740-52. PubMed ID: 25244043
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimation of bioconcentration factors of nonionic organic compounds in fish by molecular connectivity indices and polarity correction factors.
    Lu X; Tao S; Hu H; Dawson RW
    Chemosphere; 2000 Nov; 41(10):1675-88. PubMed ID: 11057696
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting the bioconcentration factor of highly hydrophobic organic chemicals.
    Garg R; Smith CJ
    Food Chem Toxicol; 2014 Jul; 69():252-9. PubMed ID: 24759698
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PBT assessment under REACH: Screening for low aquatic bioaccumulation with QSAR classifications based on physicochemical properties to replace BCF in vivo testing on fish.
    Nendza M; Kühne R; Lombardo A; Strempel S; Schüürmann G
    Sci Total Environ; 2018 Mar; 616-617():97-106. PubMed ID: 29107783
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Screening tools for the bioconcentration potential of monovalent organic ions in fish.
    Bittermann K; Linden L; Goss KU
    Environ Sci Process Impacts; 2018 May; 20(5):845-853. PubMed ID: 29714798
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biotransformation model of neutral and weakly polar organic compounds in fish incorporating internal partitioning.
    Kuo DT; Di Toro DM
    Environ Toxicol Chem; 2013 Aug; 32(8):1873-81. PubMed ID: 23625748
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic biotransformation half-lives in fish: QSAR modeling and consensus analysis.
    Papa E; van der Wal L; Arnot JA; Gramatica P
    Sci Total Environ; 2014 Feb; 470-471():1040-6. PubMed ID: 24239825
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detecting the bioaccumulation patterns of chemicals through data-driven approaches.
    Grisoni F; Consonni V; Vighi M
    Chemosphere; 2018 Oct; 208():273-284. PubMed ID: 29879561
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimating the Bioconcentration Factors of Hydrophobic Organic Compounds from Biotransformation Rates Using Rainbow Trout Hepatocytes.
    Trowell JJ; Gobas FAPC; Moore MM; Kennedy CJ
    Arch Environ Contam Toxicol; 2018 Aug; 75(2):295-305. PubMed ID: 29550936
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein and lipid binding parameters in rainbow trout (Oncorhynchus mykiss) blood and liver fractions to extrapolate from an in vitro metabolic degradation assay to in vivo bioaccumulation potential of hydrophobic organic chemicals.
    Escher BI; Cowan-Ellsberry CE; Dyer S; Embry MR; Erhardt S; Halder M; Kwon JH; Johanning K; Oosterwijk MT; Rutishauser S; Segner H; Nichols J
    Chem Res Toxicol; 2011 Jul; 24(7):1134-43. PubMed ID: 21604782
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fish bioconcentration studies with column-generated analyte concentrations of highly hydrophobic organic chemicals.
    Schlechtriem C; Böhm L; Bebon R; Bruckert HJ; Düring RA
    Environ Toxicol Chem; 2017 Apr; 36(4):906-916. PubMed ID: 27696516
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioaccumulation of organic contaminants in humans: a multimedia perspective and the importance of biotransformation.
    McLachlan MS; Czub G; MacLeod M; Arnot JA
    Environ Sci Technol; 2011 Jan; 45(1):197-202. PubMed ID: 20701275
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro to in vivo extrapolation of biotransformation rates for assessing bioaccumulation of hydrophobic organic chemicals in mammals.
    Lee YS; Lo JC; Otton SV; Moore MM; Kennedy CJ; Gobas FAPC
    Environ Toxicol Chem; 2017 Jul; 36(7):1934-1946. PubMed ID: 28000964
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural alerts for the identification of bioaccumulative compounds.
    Valsecchi C; Grisoni F; Consonni V; Ballabio D
    Integr Environ Assess Manag; 2019 Jan; 15(1):19-28. PubMed ID: 30024088
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.