These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
242 related articles for article (PubMed ID: 23382235)
21. Rice blast fungus (Magnaporthe oryzae) infects Arabidopsis via a mechanism distinct from that required for the infection of rice. Park JY; Jin J; Lee YW; Kang S; Lee YH Plant Physiol; 2009 Jan; 149(1):474-86. PubMed ID: 18987215 [TBL] [Abstract][Full Text] [Related]
22. Structure-function analyses of the Pth11 receptor reveal an important role for CFEM motif and redox regulation in rice blast. Kou Y; Tan YH; Ramanujam R; Naqvi NI New Phytol; 2017 Apr; 214(1):330-342. PubMed ID: 27898176 [TBL] [Abstract][Full Text] [Related]
23. Investigating the biology of plant infection by the rice blast fungus Magnaporthe oryzae. Martin-Urdiroz M; Oses-Ruiz M; Ryder LS; Talbot NJ Fungal Genet Biol; 2016 May; 90():61-68. PubMed ID: 26703899 [TBL] [Abstract][Full Text] [Related]
25. The appressorium of the rice blast fungus Magnaporthe oryzae remains mitotically active during post-penetration hyphal growth. Jenkinson CB; Jones K; Zhu J; Dorhmi S; Khang CH Fungal Genet Biol; 2017 Jan; 98():35-38. PubMed ID: 27890626 [TBL] [Abstract][Full Text] [Related]
26. Rac1 is required for pathogenicity and Chm1-dependent conidiogenesis in rice fungal pathogen Magnaporthe grisea. Chen J; Zheng W; Zheng S; Zhang D; Sang W; Chen X; Li G; Lu G; Wang Z PLoS Pathog; 2008 Nov; 4(11):e1000202. PubMed ID: 19008945 [TBL] [Abstract][Full Text] [Related]
27. Peroxisomal fission is induced during appressorium formation and is required for full virulence of the rice blast fungus. Chen XL; Shen M; Yang J; Xing Y; Chen D; Li Z; Zhao W; Zhang Y Mol Plant Pathol; 2017 Feb; 18(2):222-237. PubMed ID: 26950649 [TBL] [Abstract][Full Text] [Related]
28. The cell-end protein Tea4 spatially regulates hyphal branch initiation and appressorium remodeling in the blast fungus Rogers AM; Taylor R; Egan MJ Mol Biol Cell; 2024 Jan; 35(1):br2. PubMed ID: 37903237 [TBL] [Abstract][Full Text] [Related]
30. Every Coin Has Two Sides: Reactive Oxygen Species during Rice⁻ Kou Y; Qiu J; Tao Z Int J Mol Sci; 2019 Mar; 20(5):. PubMed ID: 30857220 [TBL] [Abstract][Full Text] [Related]
31. Functional analysis of lipid metabolism in Magnaporthe grisea reveals a requirement for peroxisomal fatty acid beta-oxidation during appressorium-mediated plant infection. Wang ZY; Soanes DM; Kershaw MJ; Talbot NJ Mol Plant Microbe Interact; 2007 May; 20(5):475-91. PubMed ID: 17506326 [TBL] [Abstract][Full Text] [Related]
32. MoTea4-mediated polarized growth is essential for proper asexual development and pathogenesis in Magnaporthe oryzae. Patkar RN; Suresh A; Naqvi NI Eukaryot Cell; 2010 Jul; 9(7):1029-38. PubMed ID: 20472691 [TBL] [Abstract][Full Text] [Related]
33. Suppression of plant-generated reactive oxygen species is required for successful infection by the rice blast fungus. Huang K; Czymmek KJ; Caplan JL; Sweigard JA; Donofrio NM Virulence; 2011; 2(6):559-62. PubMed ID: 21971181 [TBL] [Abstract][Full Text] [Related]
34. Homeobox transcription factors are required for conidiation and appressorium development in the rice blast fungus Magnaporthe oryzae. Kim S; Park SY; Kim KS; Rho HS; Chi MH; Choi J; Park J; Kong S; Park J; Goh J; Lee YH PLoS Genet; 2009 Dec; 5(12):e1000757. PubMed ID: 19997500 [TBL] [Abstract][Full Text] [Related]
35. Global analysis of sumoylation function reveals novel insights into development and appressorium-mediated infection of the rice blast fungus. Liu C; Li Z; Xing J; Yang J; Wang Z; Zhang H; Chen D; Peng YL; Chen XL New Phytol; 2018 Aug; 219(3):1031-1047. PubMed ID: 29663402 [TBL] [Abstract][Full Text] [Related]
36. A molecular mechanosensor for real-time visualization of appressorium membrane tension in Magnaporthe oryzae. Ryder LS; Lopez SG; Michels L; Eseola AB; Sprakel J; Ma W; Talbot NJ Nat Microbiol; 2023 Aug; 8(8):1508-1519. PubMed ID: 37474734 [TBL] [Abstract][Full Text] [Related]
37. Independent genetic mechanisms mediate turgor generation and penetration peg formation during plant infection in the rice blast fungus. Park G; Bruno KS; Staiger CJ; Talbot NJ; Xu JR Mol Microbiol; 2004 Sep; 53(6):1695-707. PubMed ID: 15341648 [TBL] [Abstract][Full Text] [Related]
38. PLS1, a gene encoding a tetraspanin-like protein, is required for penetration of rice leaf by the fungal pathogen Magnaporthe grisea. Clergeot PH; Gourgues M; Cots J; Laurans F; Latorse MP; Pepin R; Tharreau D; Notteghem JL; Lebrun MH Proc Natl Acad Sci U S A; 2001 Jun; 98(12):6963-8. PubMed ID: 11391010 [TBL] [Abstract][Full Text] [Related]
39. Characterization of 47 Cys2 -His2 zinc finger proteins required for the development and pathogenicity of the rice blast fungus Magnaporthe oryzae. Cao H; Huang P; Zhang L; Shi Y; Sun D; Yan Y; Liu X; Dong B; Chen G; Snyder JH; Lin F; Lu J New Phytol; 2016 Aug; 211(3):1035-51. PubMed ID: 27041000 [TBL] [Abstract][Full Text] [Related]
40. Discovery of broad-spectrum fungicides that block septin-dependent infection processes of pathogenic fungi. He M; Su J; Xu Y; Chen J; Chern M; Lei M; Qi T; Wang Z; Ryder LS; Tang B; Osés-Ruiz M; Zhu K; Cao Y; Yan X; Eisermann I; Luo Y; Li W; Wang J; Yin J; Lam SM; Peng G; Sun X; Zhu X; Ma B; Wang J; Liu J; Qing H; Song L; Wang L; Hou Q; Qin P; Li Y; Fan J; Li D; Wang Y; Wang X; Jiang L; Shui G; Xia Y; Gong G; Huang F; Wang W; Wu X; Li P; Zhu L; Li S; Talbot NJ; Chen X Nat Microbiol; 2020 Dec; 5(12):1565-1575. PubMed ID: 32958858 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]