BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

361 related articles for article (PubMed ID: 23382666)

  • 1. Bayesian inference of spatial organizations of chromosomes.
    Hu M; Deng K; Qin Z; Dixon J; Selvaraj S; Fang J; Ren B; Liu JS
    PLoS Comput Biol; 2013; 9(1):e1002893. PubMed ID: 23382666
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FastHiC: a fast and accurate algorithm to detect long-range chromosomal interactions from Hi-C data.
    Xu Z; Zhang G; Wu C; Li Y; Hu M
    Bioinformatics; 2016 Sep; 32(17):2692-5. PubMed ID: 27153668
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inferring Spatial Organization of Individual Topologically Associated Domains via Piecewise Helical Model.
    Zhang R; Hu M; Zhu Y; Qin Z; Deng K; Liu JS
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(2):647-656. PubMed ID: 30113897
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reconstruction of 3D genome architecture via a two-stage algorithm.
    Segal MR; Bengtsson HL
    BMC Bioinformatics; 2015 Nov; 16():373. PubMed ID: 26553003
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A maximum likelihood algorithm for reconstructing 3D structures of human chromosomes from chromosomal contact data.
    Oluwadare O; Zhang Y; Cheng J
    BMC Genomics; 2018 Feb; 19(1):161. PubMed ID: 29471801
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bayesian Estimation of Three-Dimensional Chromosomal Structure from Single-Cell Hi-C Data.
    Rosenthal M; Bryner D; Huffer F; Evans S; Srivastava A; Neretti N
    J Comput Biol; 2019 Nov; 26(11):1191-1202. PubMed ID: 31211598
    [No Abstract]   [Full Text] [Related]  

  • 7. Bayesian inference of chromatin structure ensembles from population-averaged contact data.
    Carstens S; Nilges M; Habeck M
    Proc Natl Acad Sci U S A; 2020 Apr; 117(14):7824-7830. PubMed ID: 32193349
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D genome organization and epigenetic regulation in autoimmune diseases.
    Qiu Y; Feng D; Jiang W; Zhang T; Lu Q; Zhao M
    Front Immunol; 2023; 14():1196123. PubMed ID: 37346038
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reconstructing spatial organizations of chromosomes through manifold learning.
    Zhu G; Deng W; Hu H; Ma R; Zhang S; Yang J; Peng J; Kaplan T; Zeng J
    Nucleic Acids Res; 2018 May; 46(8):e50. PubMed ID: 29408992
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inferential modeling of 3D chromatin structure.
    Wang S; Xu J; Zeng J
    Nucleic Acids Res; 2015 Apr; 43(8):e54. PubMed ID: 25690896
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Advances in three-dimensional genomics].
    Zhang F; Shen Z; Yu C; Yang Z
    Sheng Wu Gong Cheng Xue Bao; 2020 Dec; 36(12):2791-2812. PubMed ID: 33398973
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Advances in mammalian three-dimensional genome by using Hi-C technology approach].
    Ning CY; He MN; Tang QZ; Zhu Q; Li MZ; Li DY
    Yi Chuan; 2019 Mar; 41(3):215-233. PubMed ID: 30872258
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inferential Structure Determination of Chromosomes from Single-Cell Hi-C Data.
    Carstens S; Nilges M; Habeck M
    PLoS Comput Biol; 2016 Dec; 12(12):e1005292. PubMed ID: 28027298
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved accuracy assessment for 3D genome reconstructions.
    Segal MR; Bengtsson HL
    BMC Bioinformatics; 2018 May; 19(1):196. PubMed ID: 29848293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Si-C is a method for inferring super-resolution intact genome structure from single-cell Hi-C data.
    Meng L; Wang C; Shi Y; Luo Q
    Nat Commun; 2021 Jul; 12(1):4369. PubMed ID: 34272403
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GSDB: a database of 3D chromosome and genome structures reconstructed from Hi-C data.
    Oluwadare O; Highsmith M; Turner D; Lieberman Aiden E; Cheng J
    BMC Mol Cell Biol; 2020 Aug; 21(1):60. PubMed ID: 32758136
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deciphering High-Resolution 3D Chromatin Organization via Capture Hi-C.
    Hauth A; Galupa R; Servant N; Villacorta L; Hauschulz K; van Bemmel JG; Loda A; Heard E
    J Vis Exp; 2022 Oct; (188):. PubMed ID: 36314814
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MOGEN: a tool for reconstructing 3D models of genomes from chromosomal conformation capturing data.
    Trieu T; Cheng J
    Bioinformatics; 2016 May; 32(9):1286-92. PubMed ID: 26722115
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chromatin 3D structure reconstruction with consideration of adjacency relationship among genomic loci.
    Li FZ; Liu ZE; Li XY; Bu LM; Bu HX; Liu H; Zhang CM
    BMC Bioinformatics; 2020 Jul; 21(1):272. PubMed ID: 32611376
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Circular Chromosome Conformation Capture in Plants.
    Grob S
    Methods Mol Biol; 2017; 1610():73-92. PubMed ID: 28439858
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.