These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

361 related articles for article (PubMed ID: 23382666)

  • 21. Chromosome Conformation Capture in Primary Human Cells.
    Cortesi A; Bodega B
    Methods Mol Biol; 2016; 1480():213-21. PubMed ID: 27659988
    [TBL] [Abstract][Full Text] [Related]  

  • 22. ASHIC: hierarchical Bayesian modeling of diploid chromatin contacts and structures.
    Ye T; Ma W
    Nucleic Acids Res; 2020 Dec; 48(21):e123. PubMed ID: 33074315
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Single-cell Hi-C reveals cell-to-cell variability in chromosome structure.
    Nagano T; Lubling Y; Stevens TJ; Schoenfelder S; Yaffe E; Dean W; Laue ED; Tanay A; Fraser P
    Nature; 2013 Oct; 502(7469):59-64. PubMed ID: 24067610
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A unified framework for inferring the multi-scale organization of chromatin domains from Hi-C.
    Bak JH; Kim MH; Liu L; Hyeon C
    PLoS Comput Biol; 2021 Mar; 17(3):e1008834. PubMed ID: 33724986
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Application of Hi-C technology in three-dimensional genomics research and disease pathogenesis analysis.
    Wang SZ; Jiang F; Zhu DL; Yang TL; Guo Y
    Yi Chuan; 2023 Apr; 45(4):279-294. PubMed ID: 37077163
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Inter-chromosomal contact networks provide insights into Mammalian chromatin organization.
    Kaufmann S; Fuchs C; Gonik M; Khrameeva EE; Mironov AA; Frishman D
    PLoS One; 2015; 10(5):e0126125. PubMed ID: 25961318
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Automatic analysis and 3D-modelling of Hi-C data using TADbit reveals structural features of the fly chromatin colors.
    Serra F; Baù D; Goodstadt M; Castillo D; Filion GJ; Marti-Renom MA
    PLoS Comput Biol; 2017 Jul; 13(7):e1005665. PubMed ID: 28723903
    [TBL] [Abstract][Full Text] [Related]  

  • 28. 3D genomics and its applications in precision medicine.
    Chen M; Liu X; Liu Q; Shi D; Li H
    Cell Mol Biol Lett; 2023 Mar; 28(1):19. PubMed ID: 36879202
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Computational methods for predicting 3D genomic organization from high-resolution chromosome conformation capture data.
    MacKay K; Kusalik A
    Brief Funct Genomics; 2020 Jul; 19(4):292-308. PubMed ID: 32353112
    [TBL] [Abstract][Full Text] [Related]  

  • 30. De novo prediction of human chromosome structures: Epigenetic marking patterns encode genome architecture.
    Di Pierro M; Cheng RR; Lieberman Aiden E; Wolynes PG; Onuchic JN
    Proc Natl Acad Sci U S A; 2017 Nov; 114(46):12126-12131. PubMed ID: 29087948
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modelling genome-wide topological associating domains in mouse embryonic stem cells.
    Zhan Y; Giorgetti L; Tiana G
    Chromosome Res; 2017 Mar; 25(1):5-14. PubMed ID: 28108933
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genome-wide Hi-C analysis reveals extensive hierarchical chromatin interactions in rice.
    Dong Q; Li N; Li X; Yuan Z; Xie D; Wang X; Li J; Yu Y; Wang J; Ding B; Zhang Z; Li C; Bian Y; Zhang A; Wu Y; Liu B; Gong L
    Plant J; 2018 Jun; 94(6):1141-1156. PubMed ID: 29660196
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hi-C: a method to study the three-dimensional architecture of genomes.
    van Berkum NL; Lieberman-Aiden E; Williams L; Imakaev M; Gnirke A; Mirny LA; Dekker J; Lander ES
    J Vis Exp; 2010 May; (39):. PubMed ID: 20461051
    [TBL] [Abstract][Full Text] [Related]  

  • 34. ParticleChromo3D: a Particle Swarm Optimization algorithm for chromosome 3D structure prediction from Hi-C data.
    Vadnais D; Middleton M; Oluwadare O
    BioData Min; 2022 Sep; 15(1):19. PubMed ID: 36131326
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microrheology for Hi-C Data Reveals the Spectrum of the Dynamic 3D Genome Organization.
    Shinkai S; Sugawara T; Miura H; Hiratani I; Onami S
    Biophys J; 2020 May; 118(9):2220-2228. PubMed ID: 32191860
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Revealing Hi-C subcompartments by imputing inter-chromosomal chromatin interactions.
    Xiong K; Ma J
    Nat Commun; 2019 Nov; 10(1):5069. PubMed ID: 31699985
    [TBL] [Abstract][Full Text] [Related]  

  • 37. 3D Genome Reconstruction with ShRec3D+ and Hi-C Data.
    Li J; Zhang W; Li X
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(2):460-468. PubMed ID: 26955049
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification of copy number variations and translocations in cancer cells from Hi-C data.
    Chakraborty A; Ay F
    Bioinformatics; 2018 Jan; 34(2):338-345. PubMed ID: 29048467
    [TBL] [Abstract][Full Text] [Related]  

  • 39. ClusterTAD: an unsupervised machine learning approach to detecting topologically associated domains of chromosomes from Hi-C data.
    Oluwadare O; Cheng J
    BMC Bioinformatics; 2017 Nov; 18(1):480. PubMed ID: 29137603
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reciprocal insulation analysis of Hi-C data shows that TADs represent a functionally but not structurally privileged scale in the hierarchical folding of chromosomes.
    Zhan Y; Mariani L; Barozzi I; Schulz EG; Blüthgen N; Stadler M; Tiana G; Giorgetti L
    Genome Res; 2017 Mar; 27(3):479-490. PubMed ID: 28057745
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.