These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 23382771)

  • 21. Targeted ultrasound contrast agent for molecular imaging of inflammation in high-shear flow.
    Klibanov AL; Rychak JJ; Yang WC; Alikhani S; Li B; Acton S; Lindner JR; Ley K; Kaul S
    Contrast Media Mol Imaging; 2006; 1(6):259-66. PubMed ID: 17191766
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Investigation of vaporized submicron perfluorocarbon droplets as an ultrasound contrast agent.
    Reznik N; Williams R; Burns PN
    Ultrasound Med Biol; 2011 Aug; 37(8):1271-9. PubMed ID: 21723449
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of microbubble size on fundamental mode high frequency ultrasound imaging in mice.
    Sirsi S; Feshitan J; Kwan J; Homma S; Borden M
    Ultrasound Med Biol; 2010 Jun; 36(6):935-48. PubMed ID: 20447755
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Site directed vascular gene delivery in vivo by ultrasonic destruction of magnetic nanoparticle coated microbubbles.
    Mannell H; Pircher J; Fochler F; Stampnik Y; Räthel T; Gleich B; Plank C; Mykhaylyk O; Dahmani C; Wörnle M; Ribeiro A; Pohl U; Krötz F
    Nanomedicine; 2012 Nov; 8(8):1309-18. PubMed ID: 22480917
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhancement of microbubble mediated gene delivery by simultaneous exposure to ultrasonic and magnetic fields.
    Stride E; Porter C; Prieto AG; Pankhurst Q
    Ultrasound Med Biol; 2009 May; 35(5):861-8. PubMed ID: 19282096
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sonoprinting of nanoparticle-loaded microbubbles: Unraveling the multi-timescale mechanism.
    Roovers S; Lajoinie G; De Cock I; Brans T; Dewitte H; Braeckmans K; Versuis M; De Smedt SC; Lentacker I
    Biomaterials; 2019 Oct; 217():119250. PubMed ID: 31288172
    [TBL] [Abstract][Full Text] [Related]  

  • 27. New doxorubicin-loaded phospholipid microbubbles for targeted tumor therapy: Part I--Formulation development and in-vitro characterization.
    Tinkov S; Winter G; Coester C; Bekeredjian R
    J Control Release; 2010 Apr; 143(1):143-50. PubMed ID: 20060861
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The onset of microbubble vibration.
    Emmer M; van Wamel A; Goertz DE; de Jong N
    Ultrasound Med Biol; 2007 Jun; 33(6):941-9. PubMed ID: 17451868
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Observing ultrasound stimulated microbubble dynamics at MHz framing rates.
    Prentice PA; Campbell PA
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4463-6. PubMed ID: 19163705
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modeling of nonlinear viscous stress in encapsulating shells of lipid-coated contrast agent microbubbles.
    Doinikov AA; Haac JF; Dayton PA
    Ultrasonics; 2009 Feb; 49(2):269-75. PubMed ID: 18990417
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fluorescent microscope system to monitor real-time interactions between focused ultrasound, echogenic drug delivery vehicles, and live cell membranes.
    Ibsen S; Benchimol M; Esener S
    Ultrasonics; 2013 Jan; 53(1):178-84. PubMed ID: 22749476
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ultrasound contrast agents: basic principles.
    Calliada F; Campani R; Bottinelli O; Bozzini A; Sommaruga MG
    Eur J Radiol; 1998 May; 27 Suppl 2():S157-60. PubMed ID: 9652516
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Hand-Held Magnetic Acoustic Device With Integrated Real-Time Monitoring for Targeted Drug Delivery.
    Shieh B; Thomas A; Barnsley L; Smith C; Handa A; Lee R; Stride E
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Aug; 69(8):2462-2473. PubMed ID: 35709116
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microbubble tunneling in gel phantoms.
    Caskey CF; Qin S; Dayton PA; Ferrara KW
    J Acoust Soc Am; 2009 May; 125(5):EL183-9. PubMed ID: 19425620
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effect of boundary proximity on the response of individual ultrasound contrast agent microbubbles.
    Helfield BL; Leung BY; Goertz DE
    Phys Med Biol; 2014 Apr; 59(7):1721-45. PubMed ID: 24619133
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Preparation of Cationic Lipid-coated Ultrasound Contrast Agents and Noninvasive Gene Transfection Via Ultrasound-targeted Microbubble Destruction.
    Yang F; Li Y; Liufu C; Wang Y; Chen Z
    Curr Pharm Des; 2018; 24(30):3587-3595. PubMed ID: 30317990
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Monitoring of acoustic cavitation in microbubble-presented focused ultrasound exposure using gradient-echo MRI.
    Wu CH; Liu HL; Ho CT; Hsu PH; Fan CH; Yeh CK; Kang ST; Chen WS; Wang FN; Peng HH
    J Magn Reson Imaging; 2020 Jan; 51(1):311-318. PubMed ID: 31125166
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microbubble stability is a major determinant of the efficiency of ultrasound and microbubble mediated in vivo gene transfer.
    Alter J; Sennoga CA; Lopes DM; Eckersley RJ; Wells DJ
    Ultrasound Med Biol; 2009 Jun; 35(6):976-84. PubMed ID: 19285783
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multi-timescale Microscopy Methods for the Characterization of Fluorescently-labeled Microbubbles for Ultrasound-Triggered Drug Release.
    Nawijn C; Segers T; Lajoinie G; Mørch Ý; Berg S; Snipstad S; de Lange Davies C; Versluis M
    J Vis Exp; 2021 Jun; (172):. PubMed ID: 34180885
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modeling non-spherical oscillations and stability of acoustically driven shelled microbubbles.
    Loughran J; Eckersley RJ; Tang MX
    J Acoust Soc Am; 2012 Jun; 131(6):4349-57. PubMed ID: 22712909
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.