BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 23382943)

  • 1. Insights from the fungus Fusarium oxysporum point to high affinity glucose transporters as targets for enhancing ethanol production from lignocellulose.
    Ali SS; Nugent B; Mullins E; Doohan FM
    PLoS One; 2013; 8(1):e54701. PubMed ID: 23382943
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Challenges in ethanol production with Fusarium oxysporum through consolidated bioprocessing.
    Anasontzis GE; Christakopoulos P
    Bioengineered; 2014; 5(6):393-5. PubMed ID: 25424444
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heterologous expression of transaldolase gene Tal from Saccharomyces cerevisiae in Fusarium oxysporum for enhanced bioethanol production.
    Fan JX; Yang XX; Song JZ; Huang XM; Cheng ZX; Yao L; Juba OS; Liang Q; Yang Q; Odeph M; Sun Y; Wang Y
    Appl Biochem Biotechnol; 2011 Aug; 164(7):1023-36. PubMed ID: 21394668
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generating phenotypic diversity in a fungal biocatalyst to investigate alcohol stress tolerance encountered during microbial cellulosic biofuel production.
    Hennessy RC; Doohan F; Mullins E
    PLoS One; 2013; 8(10):e77501. PubMed ID: 24147009
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Major Facilitator Superfamily Peptide Transporter From
    Nugent B; Ali SS; Mullins E; Doohan FM
    Front Microbiol; 2019; 10():295. PubMed ID: 30863378
    [No Abstract]   [Full Text] [Related]  

  • 6. Fusarium oxysporum: status in bioethanol production.
    Singh A; Kumar PK
    Crit Rev Biotechnol; 1991; 11(2):129-47. PubMed ID: 1913845
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolutionary engineered Candida intermedia exhibits improved xylose utilization and robustness to lignocellulose-derived inhibitors and ethanol.
    Moreno AD; Carbone A; Pavone R; Olsson L; Geijer C
    Appl Microbiol Biotechnol; 2019 Feb; 103(3):1405-1416. PubMed ID: 30498977
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct ethanol production from glucose, xylose and sugarcane bagasse by the corn endophytic fungi Fusarium verticillioides and Acremonium zeae.
    de Almeida MN; Guimarães VM; Falkoski DL; Visser EM; Siqueira GA; Milagres AM; de Rezende ST
    J Biotechnol; 2013 Oct; 168(1):71-7. PubMed ID: 23942376
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of hexose transporter-like sensor hxs1 and transcription activator involved in carbohydrate sensing azf1 in xylose and glucose fermentation in the thermotolerant yeast Ogataea polymorpha.
    Semkiv MV; Ruchala J; Tsaruk AY; Zazulya AZ; Vasylyshyn RV; Dmytruk OV; Zuo M; Kang Y; Dmytruk KV; Sibirny AA
    Microb Cell Fact; 2022 Aug; 21(1):162. PubMed ID: 35964033
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering of Pentose Transport in
    Nijland JG; Driessen AJM
    Front Bioeng Biotechnol; 2019; 7():464. PubMed ID: 32064252
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioconversion of lignocellulose-derived sugars to ethanol by engineered Saccharomyces cerevisiae.
    Madhavan A; Srivastava A; Kondo A; Bisaria VS
    Crit Rev Biotechnol; 2012 Mar; 32(1):22-48. PubMed ID: 21204601
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of Paecilomyces variotii potential in bioethanol production from lignocellulose through consolidated bioprocessing.
    Zerva A; Savvides AL; Katsifas EA; Karagouni AD; Hatzinikolaou DG
    Bioresour Technol; 2014 Jun; 162():294-9. PubMed ID: 24759646
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cloning novel sugar transporters from Scheffersomyces (Pichia) stipitis allowing D-xylose fermentation by recombinant Saccharomyces cerevisiae.
    de Sales BB; Scheid B; Gonçalves DL; Knychala MM; Matsushika A; Bon EP; Stambuk BU
    Biotechnol Lett; 2015 Oct; 37(10):1973-82. PubMed ID: 26087949
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The characterization of transaldolase gene tal from Pichia stipitis and its heterologous expression in Fusarium oxysporum.
    Fan JX; Yang Q; Liu ZH; Huang XM; Song JZ; Chen ZX; Sun Y; Liang Q; Wang S
    Mol Biol Rep; 2011 Mar; 38(3):1831-40. PubMed ID: 20845075
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increased xylose affinity of Hxt2 through gene shuffling of hexose transporters in Saccharomyces cerevisiae.
    Nijland JG; Shin HY; de Waal PP; Klaassen P; Driessen AJM
    J Appl Microbiol; 2018 Feb; 124(2):503-510. PubMed ID: 29240974
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fungal-mediated consolidated bioprocessing: the potential of Fusarium oxysporum for the lignocellulosic ethanol industry.
    Ali SS; Nugent B; Mullins E; Doohan FM
    AMB Express; 2016 Mar; 6(1):13. PubMed ID: 26888202
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic Engineering of Fusarium oxysporum to Improve Its Ethanol-Producing Capability.
    Anasontzis GE; Kourtoglou E; Villas-Boâs SG; Hatzinikolaou DG; Christakopoulos P
    Front Microbiol; 2016; 7():632. PubMed ID: 27199958
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Constitutive homologous expression of phosphoglucomutase and transaldolase increases the metabolic flux of Fusarium oxysporum.
    Anasontzis GE; Kourtoglou E; Mamma D; Villas-Boâs SG; Hatzinikolaou DG; Christakopoulos P
    Microb Cell Fact; 2014 Mar; 13(1):43. PubMed ID: 24649884
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ethanol effect on metabolic activity of the ethalogenic fungus Fusarium oxysporum.
    Paschos T; Xiros C; Christakopoulos P
    BMC Biotechnol; 2015 Mar; 15():15. PubMed ID: 25887038
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Xylose and xylose/glucose co-fermentation by recombinant Saccharomyces cerevisiae strains expressing individual hexose transporters.
    Gonçalves DL; Matsushika A; de Sales BB; Goshima T; Bon EP; Stambuk BU
    Enzyme Microb Technol; 2014 Sep; 63():13-20. PubMed ID: 25039054
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.