These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 23382973)

  • 1. The flux-based PIN allocation mechanism can generate either canalyzed or diffuse distribution patterns depending on geometry and boundary conditions.
    Walker ML; Farcot E; Traas J; Godin C
    PLoS One; 2013; 8(1):e54802. PubMed ID: 23382973
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-organization of plant vascular systems: claims and counter-claims about the flux-based auxin transport model.
    Feller C; Farcot E; Mazza C
    PLoS One; 2015; 10(3):e0118238. PubMed ID: 25734327
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mathematical Modelling of Auxin Transport in Plant Tissues: Flux Meets Signalling and Growth.
    Allen HR; Ptashnyk M
    Bull Math Biol; 2020 Jan; 82(2):17. PubMed ID: 31970524
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flux-based transport enhancement as a plausible unifying mechanism for auxin transport in meristem development.
    Stoma S; Lucas M; Chopard J; Schaedel M; Traas J; Godin C
    PLoS Comput Biol; 2008 Oct; 4(10):e1000207. PubMed ID: 18974825
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mathematical study for the mechanism of vascular and spot patterns by auxin and pin dynamics in plant development.
    Hayakawa Y; Tachikawa M; Mochizuki A
    J Theor Biol; 2015 Jan; 365():12-22. PubMed ID: 25303888
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Connective auxin transport contributes to strigolactone-mediated shoot branching control independent of the transcription factor BRC1.
    van Rongen M; Bennett T; Ticchiarelli F; Leyser O
    PLoS Genet; 2019 Mar; 15(3):e1008023. PubMed ID: 30865619
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Canalization: what the flux?
    Bennett T; Hines G; Leyser O
    Trends Genet; 2014 Feb; 30(2):41-8. PubMed ID: 24296041
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Auxin and self-organization at the shoot apical meristem.
    Sassi M; Vernoux T
    J Exp Bot; 2013 Jun; 64(9):2579-92. PubMed ID: 23585672
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polar auxin transport: models and mechanisms.
    van Berkel K; de Boer RJ; Scheres B; ten Tusscher K
    Development; 2013 Jun; 140(11):2253-68. PubMed ID: 23674599
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple MONOPTEROS-dependent pathways are involved in leaf initiation.
    Schuetz M; Berleth T; Mattsson J
    Plant Physiol; 2008 Oct; 148(2):870-80. PubMed ID: 18685044
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling framework for the establishment of the apical-basal embryonic axis in plants.
    Wabnik K; Robert HS; Smith RS; Friml J
    Curr Biol; 2013 Dec; 23(24):2513-8. PubMed ID: 24291090
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Auxin at the shoot apical meristem.
    Vernoux T; Besnard F; Traas J
    Cold Spring Harb Perspect Biol; 2010 Apr; 2(4):a001487. PubMed ID: 20452945
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strigolactone can promote or inhibit shoot branching by triggering rapid depletion of the auxin efflux protein PIN1 from the plasma membrane.
    Shinohara N; Taylor C; Leyser O
    PLoS Biol; 2013; 11(1):e1001474. PubMed ID: 23382651
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulation of organ patterning on the floral meristem using a polar auxin transport model.
    van Mourik S; Kaufmann K; van Dijk AD; Angenent GC; Merks RM; Molenaar J
    PLoS One; 2012; 7(1):e28762. PubMed ID: 22291882
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Feedback from Lateral Organs Controls Shoot Apical Meristem Growth by Modulating Auxin Transport.
    Shi B; Guo X; Wang Y; Xiong Y; Wang J; Hayashi KI; Lei J; Zhang L; Jiao Y
    Dev Cell; 2018 Jan; 44(2):204-216.e6. PubMed ID: 29401419
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative predictions on auxin-induced polar distribution of PIN proteins during vein formation in leaves.
    Alim K; Frey E
    Eur Phys J E Soft Matter; 2010 Oct; 33(2):165-73. PubMed ID: 20571847
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The auxin response factor MONOPTEROS controls meristem function and organogenesis in both the shoot and root through the direct regulation of PIN genes.
    Krogan NT; Marcos D; Weiner AI; Berleth T
    New Phytol; 2016 Oct; 212(1):42-50. PubMed ID: 27441727
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PIN-driven polar auxin transport in plant developmental plasticity: a key target for environmental and endogenous signals.
    Habets MEJ; Offringa R
    New Phytol; 2014 Jul; 203(2):362-377. PubMed ID: 24863651
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A plausible mechanism for auxin patterning along the developing root.
    Mironova VV; Omelyanchuk NA; Yosiphon G; Fadeev SI; Kolchanov NA; Mjolsness E; Likhoshvai VA
    BMC Syst Biol; 2010 Jul; 4():98. PubMed ID: 20663170
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ZmPIN1a and ZmPIN1b encode two novel putative candidates for polar auxin transport and plant architecture determination of maize.
    Carraro N; Forestan C; Canova S; Traas J; Varotto S
    Plant Physiol; 2006 Sep; 142(1):254-64. PubMed ID: 16844839
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.