These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 23383119)

  • 1. New measurement methods of network robustness and response ability via microarray data.
    Tu CT; Chen BS
    PLoS One; 2013; 8(1):e55230. PubMed ID: 23383119
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the increase in network robustness and decrease in network response ability during the aging process: a systems biology approach via microarray data.
    Tu CT; Chen BS
    IEEE/ACM Trans Comput Biol Bioinform; 2013; 10(2):468-80. PubMed ID: 23929870
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of artificial time series microarray data for dynamic gene regulatory network inference.
    Xenitidis P; Seimenis I; Kakolyris S; Adamopoulos A
    J Theor Biol; 2017 Aug; 426():1-16. PubMed ID: 28528256
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MICRAT: a novel algorithm for inferring gene regulatory networks using time series gene expression data.
    Yang B; Xu Y; Maxwell A; Koh W; Gong P; Zhang C
    BMC Syst Biol; 2018 Dec; 12(Suppl 7):115. PubMed ID: 30547796
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the estimation of robustness and filtering ability of dynamic biochemical networks under process delays, internal parametric perturbations and external disturbances.
    Chen BS; Chen PW
    Math Biosci; 2009 Dec; 222(2):92-108. PubMed ID: 19788895
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Global multiple protein-protein interaction network alignment by combining pairwise network alignments.
    Dohrmann J; Puchin J; Singh R
    BMC Bioinformatics; 2015; 16 Suppl 13(Suppl 13):S11. PubMed ID: 26423128
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mapping connections in signaling networks with ambiguous modularity.
    Lill D; Rukhlenko OS; Mc Elwee AJ; Kashdan E; Timmer J; Kholodenko BN
    NPJ Syst Biol Appl; 2019; 5():19. PubMed ID: 31149348
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probabilistic functional gene societies.
    Lee I
    Prog Biophys Mol Biol; 2011 Aug; 106(2):435-42. PubMed ID: 21281658
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fusing gene expressions and transitive protein-protein interactions for inference of gene regulatory networks.
    Liu W; Rajapakse JC
    BMC Syst Biol; 2019 Apr; 13(Suppl 2):37. PubMed ID: 30953534
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Applying attractor dynamics to infer gene regulatory interactions involved in cellular differentiation.
    Ghaffarizadeh A; Podgorski GJ; Flann NS
    Biosystems; 2017 May; 155():29-41. PubMed ID: 28254369
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamical and topological robustness of the mammalian cell cycle network: a reverse engineering approach.
    Ruz GA; Goles E; Montalva M; Fogel GB
    Biosystems; 2014 Jan; 115():23-32. PubMed ID: 24212100
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolving robust gene regulatory networks.
    Noman N; Monjo T; Moscato P; Iba H
    PLoS One; 2015; 10(1):e0116258. PubMed ID: 25616055
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crosstalk between transcription factors and microRNAs in human protein interaction network.
    Lin CC; Chen YJ; Chen CY; Oyang YJ; Juan HF; Huang HC
    BMC Syst Biol; 2012 Mar; 6():18. PubMed ID: 22413876
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Sparse Reconstruction Approach for Identifying Gene Regulatory Networks Using Steady-State Experiment Data.
    Zhang W; Zhou T
    PLoS One; 2015; 10(7):e0130979. PubMed ID: 26207991
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bacterial molecular networks: bridging the gap between functional genomics and dynamical modelling.
    van Helden J; Toussaint A; Thieffry D
    Methods Mol Biol; 2012; 804():1-11. PubMed ID: 22144145
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Constructing an integrated genetic and epigenetic cellular network for whole cellular mechanism using high-throughput next-generation sequencing data.
    Chen BS; Li CW
    BMC Syst Biol; 2016 Feb; 10():18. PubMed ID: 26897165
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of assortativity on the robustness of signal-integration logic in gene regulatory networks.
    Pechenick DA; Payne JL; Moore JH
    J Theor Biol; 2012 Mar; 296():21-32. PubMed ID: 22155134
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling information flow in biological networks.
    Kim YA; Przytycki JH; Wuchty S; Przytycka TM
    Phys Biol; 2011 Jun; 8(3):035012. PubMed ID: 21572171
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Co-expression Networks in Predicting Transcriptional Gene Regulation.
    AbuQamar SF; El-Tarabily KA; Sham A
    Methods Mol Biol; 2021; 2328():1-11. PubMed ID: 34251616
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Constructing gene regulatory networks from microarray data using non-Gaussian pair-copula Bayesian networks.
    Chatrabgoun O; Hosseinian-Far A; Daneshkhah A
    J Bioinform Comput Biol; 2020 Aug; 18(4):2050023. PubMed ID: 32706288
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.